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ARTICLE INFO ABSTRACT

Keywords: In Birgin et al. (2020) the multi-period two-dimensional non-guillotine cutting stock problem with usable
Two-dimensional cutting stock with usable leftovers was introduced. At each decision instant, the problem consists in determining a cutting pattern for a
leftovers

set of ordered items using a set of objects that can be purchased or can be leftovers of previous periods; the goal
being the minimization of the overall cost of the objects up to the considered time horizon. Among solutions
with minimum cost, a solution that maximizes the value of the leftovers at the end of the considered horizon
is sought. A forward-looking matheuristic approach that applies to this problem is introduced in the present
work. At each decision instant, the objects and the cutting pattern that will be used is determined, taking into
account the impact of this decision in future states of the system. More specifically, for each potentially used
object, an attempt is made to estimate the utilization rate of its leftovers and thereby determine whether the
object should be used or not. The introduced approach is compared with an exact off-the-shelf commercial
solver and a myopic technique. Numerical experiments show the efficacy of the proposed approach.

Non-guillotine cutting and packing
Multi-period scenario

Forward-looking or looking-ahead approach
Matheuristic

1. Introduction and existent leftovers to produce all ordered items. The cutting pattern
of each object (leftover or purchased) must also be determined. The
problem is said to be two-dimensional because it involves the width
and the height of items and objects; while it is said to be non-guillotine

because cuts are not restricted to be guillotine cuts. Assuming the

In this paper, we consider the multi-period two-dimensional non-
guillotine cutting stock problem with usable leftovers. In the problem,
P periods of time denoted by [s — 1,s] for s = 1, ..., P are considered;
period [s—1, s] corresponding to¢,_; <t <t , wheref, <t < .- <1p are

given decision time instants. Small rectangular pieces of varying sizes
(named items) can be ordered at any instant ¢ between #, and 7p_,.
However, assuming the discrete time convention, if an item is ordered
atan instant ¢t such thatr,_; <t <r forsome s € {1,..., P—1}, thenitis
assumed the item was ordered at instant ¢,. All items ordered at instant
t, must be produced between 7, and 7,,; and delivered at instant 7 ;.
Raw material is available in the form of large rectangular purchasable
pieces (named purchasable objects) or as usable leftovers of previous
periods, i.e. parts of objects purchased at previous periods that were not
used to produce items. (Remains of the cutting process can be classified
as usable leftovers or can be discarded as scrap. Usable leftovers will be
formally defined in Section 2, but roughly speaking they cannot be very
old and must satisfy size constraints.) At each instant 7,, ordered items
are known and the problem consists in selecting objects to be purchased

* Corresponding author.

material is anisotropic, rotations of the items are not allowed. Objects
as well as leftovers can produce new leftovers. The amount of leftovers
in stock is maintained under control with a parameter & € {0, 1, ..., P}
that determines that parts (leftovers, leftovers of leftovers, etc.) of an
object purchased at instant 7, can only be used at instants #,,..., 7 ;.
(If £ = 0, the problem has no leftovers at all; while, if £ = 1, leftovers
can only be used in the period immediately following the period in
which they were generated.) The goal is to minimize the overall cost
of objects purchased to produce all orders from instant #, to instant
tp_, and, among the minimum cost solutions, to choose one in which
the value of the usable leftovers remaining at instant 7, (end of the
considered time horizon) is maximized.
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As introduced in Birgin et al. (2020) and described in the paragraph
above, the problem includes two hierarchically ordered objectives re-
lated to the cost of raw material and keeps the stock under control by
constraining it, with parameter &, to be proportional to incoming or-
ders. Alternatively, the cost of inventories could have been included in
the objective function. In this paper, we chose to follow the formulation
proposed in Birgin et al. (2020), which assumes that there is installed
and available capacity for storage and handling of stocks and minimizes
the raw material cost by taking into account the leftovers.

In the current work, we propose a forward-looking matheuristic
to solve medium- and large-sized instances of the described problem.
Forward-looking strategies have already been used with great success in
different types of discrete optimization problems; see, for example, Ron-
coni and Powell (2010), Powell (2007) and the references therein. In
a training phase, the method attempts to estimate the proportion of
each generated usable leftover that will be effectively used to produce
items ordered in forthcoming periods. With this information, at a given
period, a more expensive object can be purchased if the estimated
future use of its leftovers points to future savings. A subproblem is
solved per period. The decision variables determine the objects the
must be purchased, the leftovers from previous periods that will be
used, and their cutting pattern. All ordered items must be produced;
and the goal is to minimize an objective function that, by discounting
the cost of leftovers that are assumed to be used in the near future to
produce ordered items within the considered time horizon, minimize
the effective cost of the raw material needed to produce the items
ordered in the period. The estimation of the effective usage of leftovers
being generated, that is required to estimate the actual cost of the raw
material, constitutes the forward-looking ingredient of the method. At
the end of each training cycle, the estimated utilization proportion of
each leftover is compared with its actual utilization proportion, and
the estimate is updated. The updating rule and the stopping criterion
ensure that the number of training cycles is finite.

The proposed method is calibrated with the instances with four
periods considered in Birgin et al. (2020); and then evaluated on a new
set of instances with four, eight, and twelve periods. The performance
of the method is compared with a myopic approach on the new set
of thirty instances with up to twelve periods. For the new (small)
instances with four periods, an additional comparison with CPLEX is
also presented. The myopic approach differs with the forward-looking
approach only in the objective function being minimized at each period.
While the forward-looking approach considers the possible future use
of letfovers, the myopic approach greedily minimizes the cost of the
objects necessary to produce the ordered items of the period. The
problem includes a parameter that tells for how many periods, after
being generated, a leftover is available for use, thus keeping the stock
under control. The larger the durability of the leftovers, the greater
the opportunity to save with the acquisition of purchasable objects.
Experiments show that the forward-looking approach outperforms the
myopic approach by a large extent and that, the greater the number of
periods or the larger the durability of usable leftovers, the greater the
advantage.

The problem considered in the present work was proposed in Birgin
et al. (2020), where a mixed integer linear programming model was
introduced and instances with up to four periods were solved using
CPLEX. However, no solution method has yet been proposed to deal
with larger instances of the problem. The single-period version of the
problem was considered in Andrade et al. (2014), where a discussion
related to alternative definitions of usable leftovers was presented.
Several papers in the literature, many of them based on real-world
applications, address the one-dimensional cutting stock problem with
usable leftovers; see the pioneers’ works (Roodman, 1986; Scheithauer,
1991) and the more recent works (Ali et al., 2021; Baykasoglu & Ozbel,
2021; Cherri et al., 2013, 2014; do Nascimento et al., 2022; Poldi &
Arenales, 2010; Tomat & Gradisar, 2017). On the other hand, only a few
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publications tackle the two-dimensional case considered in the present
work.

In all publications dedicated to the one-dimensional problem men-
tioned in the previous paragraph, a multi-period scenario is considered
and a single threshold determines whether a cutting pattern leftover
is disposed of as trim-loss or is a usable leftover. In particular, Tomat
and Gradisar (2017) focuses on determining the optimal amount of
usable leftovers that should be kept in stock in order to make good
use of the raw material and at the same time minimize the cost of
stock handling. In Cherri et al. (2013), a heuristic that prioritizes the
use of leftovers in order to control their stock quantity is presented.
A rolling horizon scheme for the same problem is proposed in Poldi
and Arenales (2010). The subproblem of each period is solved with
a simplex method with column generation and different strategies
are considered in order to obtain integer solutions through rounding.
A survey that reviews published studies up to 2014 can be found
in Cherri et al. (2014). A recent work (do Nascimento et al., 2022)
integrates the problem with the lot-sizing problem. In the problem
under consideration, it is possible to bring forward the production of
items with known demand in a future period. A relax-and-fix approach
is proposed that solves the subproblems with a simplex method with
column generation. Other recent works present practical applications
in the marble industry (Baykasoglu & Ozbel, 2021) and in the use of
leftover piping in construction (Ali et al., 2021).

Exact and non-exact two- and three-stage two-dimensional cutting
stock problems with leftovers are considered in Silva et al. (2010). In
the considered problem, a single item is cut from a raw material object
at a time, through one or two guillotine cuts, generating zero, one, or
two “residual objects”. A MILP model that extends the one-cut model
presented in Dyckhoff (1981) for the one-dimensional cutting stock
problem is introduced; and numerical experiments solving real-world
instances of the furniture industry and instances from the literature
are presented. MILP models are solved with CPLEX. On the one hand,
the goal is minimizing the number of cuts. On the other hand, several
extensions, such as minimizing the number of used raw material objects
(that are all of the same type), minimizing the length of the cuts,
minimizing waste, allowing rotations, and considering multiple type
of objects are also considered. One of the extensions, that points to
attributing a value to the leftovers, opens the possibility of embedding
the considered problem in a multi-period framework, as its was later
done by the same authors in Silva et al. (2014). In Silva et al. (2014),
the problem is integrated with the lot-sizing problem with the aim
of minimizing a total cost that includes material, waste and storage
costs. In the problem under consideration, anticipating the produc-
tion of items maximizes raw material utilization while incurring stock
costs; and a balance between these conflicting objectives is sought by
minimizing their pricing. Two MILP models that do not depend on
cutting patterns generation and two heuristics based on the industrial
practice are presented. In contrast to the problem considered in the
present work, at each period, two-stage non-exact cutting patterns are
generated. In a brief contribution (Chen et al., 2015), a single-period
problem with three-stage cutting patterns is considered in which the
leftovers consist of remnants of the first cutting stage, the objective
being to minimize the difference between the object cost and the
value of the usable leftovers generated. A real-world multi-period three-
dimensional cutting problem related to the supply of steel blocks in
the metalworking is considered in Viegas et al. (2016). Since remnants
from one period can be used to produce items ordered in future periods,
the problem considers leftovers; the objective being to keep stock
growth under control. For the problem at hand, constructive heuristic
procedures are proposed.

The rest of this paper is organized as follows. Section 2 provides a
formal description of the multi-period two-dimensional non-guillotine
cutting stock problem with leftovers. Section 3 introduces the proposed
matheuristic with a looking-ahead feature. Section 4 presents numerical
experiments. Conclusions and lines for future research are given in the
last section.
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Fig. 1. Pictures (a) and (b) illustrate the two possible ways in which two leftovers can be generated from an object by performing a vertical and a horizontal guillotine pre-cut.
In case (a), the vertical guillotine pre-cut is made first; while, in case (b), the horizontal guillotine pre-cut is made first.

2. The multi-period two-dimensional non-guillotine cutting stock
problem with leftovers

In this section, the multi-period two-dimensional non-guillotine
cutting stock problem with usable leftovers is described; and its mixed
integer linear programming formulation introduced in Birgin et al.
(2020) is presented. The (single-period) two-dimensional non-guillotine
cutting stock problem with leftovers was introduced in Andrade et al.
(2014) and extended to the multi-period framework in Birgin et al.
(2020). One of the main features of the problem is that, when an object
is used to cut items from it, two leftovers are obtained by performing
a couple of guillotine pre-cuts on the object that separate the leftovers
from the cutting area of the object (region from where the items will
be cut); see Fig. 1. Of course, the leftovers are optional and either one
or both can be empty, i.e. have zero area. It should be noted that,
regardless of whether or not there are leftovers and, if there are, how
they are separated from the object, the items are cut from the cutting
area of the object in a non-guillotine pattern. Given a catalogue of
items, we say a leftover is usable if it can fit at least an item from
the catalogue. In this case, the leftover’s value is given by its area
times the cost per unit of area of the object. Otherwise, the leftover is
disposable and has no value at all. It is worth noting that this definition
of leftovers implies that any part of the cutting area of the object that
is not used to produce an item is considered waste. See Andrade et al.
(2016) and Andrade et al. (2014) for other definitions of leftovers in
two-dimensional problems. Andrade et al. (2014) includes a detailed
description of the single-period version of the problem, with several
examples. Unlike the multi-period model presented in Birgin et al.
(2020), the model introduced in this section considers time instants s
from p to P. The possibility of choosing the initial and final instants of
the model gives the necessary flexibility to formulate subproblems in
algorithms of the rolling horizon type as the one that will be presented
later.

Let p and P satisfying p < P be the first and the last instant to
be considered, respectively. For each instant s = p,..., P — 1, there
are given m, purchasable objects O,; with width W,;, height H,;, and
cost c,; per unit of area (j = 1,...,m,) and a set of n; ordered items
I,; with width w; and height h; (i = 1,...,n,). A catalogue composed
by d items 7; with width w,; and height ; (i = 1,...,d) is also given.
A parameter ¢ € [0, P — p] says that leftovers generated within a
period [s, s+ 1) remain valid up to period [s+&, s+ &+ 1). By definition,
each object generates two leftovers. This means that the number of
objects at instant s is given by

mg =mg+2m,_; for s=p,..., P, (€D)]
where
min{s—p,é—1}
mg= Y 2mg_,, fors=p,...P-1, 2
£=0

stands for the number of objects that, at period [s,s + 1), generate
leftovers, i1,_; = 0 (i.e. no leftovers coming from previous periods at the
first considered instant s = p), and mp = 0 (i.e. no purchasable objects
at the last considered instant s = P). Note that, since, by definition,
there are no purchasable objects at instant P, /mp represents the number
of leftovers available at instant P. The problem consists in minimizing
the overall cost of the purchasable objects required to produce the items
ordered at instants p,..., P — 1 making use of leftovers; and, among
all solutions with minimum cost, maximizing the value of the usable
leftovers at instant P. See Figs. 2 and 3. Fig. 2 describes a toy instance
of the problem; while Fig. 3 exhibits two different feasible solutions.

Purchasable objects O,; (s =p,...,P—1, j=1,...,m,) have a given
cost c,; per unit of area. The value of an usable leftover is given by
its area times its cost per unit of area; and the cost per unit of area of
a leftover corresponds to the cost per unit of area of the purchasable
object from which the leftover comes from. In order to make this
relation, we associate with each (purchasable or leftover) object O,;
(s=p,....P, j =1,....,m,) an expiration date e, in such a way that,
if Oy; is a purchasable object, we define e;; = ¢& while if Oy; is a
leftover then we define e; as the expiration date of the object from
which it comes from reduced by one. Clearly, e,; > 0, since objects with
null expiration date do not generate leftovers. Let VH- V- A
be the indices of the s objects that generate leftovers in the period
[s,s +1); and let us define that, at instant s + 1, objects Oy, , 4211
and Oy, 12 correspond to the “top leftover” and to the “right-
hand-side leftover” of object O; it respectively. Thus, ¢y, , 4ox-1 =
cs+1,mx+l+2k = Cs,jx and es+l,mx+]+2k—l = es+l,mx+]+2k = es,j; — 1. The
relevant costs are the costs cp; (j = mp + 1,...,mp) that correspond
to the value (per unit of area) of the leftovers available at instant P,
i.e. at the end of the considered time horizon, that are the leftovers
whose value must be maximized. For a given instant s (s = p, ..., P—1)
and the expiration dates e;; of the /n; objects available at the instant,
the /i, < rm; indices j{,j;,... of the objects that potentially generate
leftovers can be computed as follows. Start with k = 0 and, for j from 1
to i, if e;; > 0 then increase k by one and set j; = ;. Finish by setting
i, = k.

The description of the problem’s variables follows. Variables v;; €
0,1} (s=p,....P=1,j=1,...,m,, i =1,...,n,) assign items to objects
(vg;; = 1 if item I; is assigned to object O,;; and v;; = 0 otherwise).
Variables ug; € {0,1} (s=p,....,P—1, j=1,...,m,) identify whether at
least an item is assigned to object O; or not (u;; = 1 and u,; = 0,
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Fig. 2. Illustration of a small instance with p =0, P =3, and ¢ = P — p = 3, meaning that usable leftovers generated at any period remain usable up to instant P. The picture
shows the available purchasable objects and the ordered items at each instant s € {0, 1,2}. The numbers of available purchasable objects and ordered items at each instant are
given by my =m; =m, =2 and n, =2, n; =4 and n, = 3, respectively. The cost per unit of area of all the objects is one (i.e. ¢;; = ¢y, =¢;; = ¢}, = ¢, =¢p = 1) and the catalogue

with d =1 item is composed by an item with @, =3 and &, = 1.
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Fig. 3. Illustration of two solutions that, at each period, may cut ordered items from purchasable objects or from usable leftovers from previous periods. (a) Greedy solution
obtained by a myopic method that, at each decision instant, minimizes the cost of the purchasable objects required to cut the ordered items of that instant, assuming that usable
leftovers from previous periods are free. (b) Solution with minimum total cost of the required purchasable objects and, in addition, maximum value of the usable leftovers at
instant P = 3. The cost of the purchased objects in the solution in (a) is 108; while the same cost is 80 in (b).

respectively). Variables n,; € {0,1} (s = p,....P =1, j = 1,...,m)
determine if the vertical pre-cut that separates the cutting area from the
leftover in object O,; is made before the horizontal pre-cut (r,; = 1) or if
the horizontal pre-cut precedes the vertical pre-cut (r,; = 0). Variables
tandrg; €R(s=p,...,P-1,j=1,...,m,) determine the height of the
top leftover and the width of the right-hand-side leftover of object O,;,
respectively. Variables W; and A;; € R (s = p,..., P, j = 1,...,m,)
represent the width and the height of object O,;. (This is relevant to
the objects that are leftovers of objects purchased at previous periods,
since the dimensions of purchasable objects are constant, i.e. W,; = W,;
and H;; = Hy; for every s whenever I < j < m.) Variables x,
and 7,y € {0,1} s = p,....,.P—=1,i = 1,...,ng, i' = i+ 1,...,n)
are auxiliary variables used to avoid the overlapping between items.
Variables v €ER (j = 1,...,mp) are related to the value of the area
of the leftovers at instant P, i.e. at the end of the considered time
horizon. Variables 0,0 €{0,1} and w;y €ER G=1..,mp,¢=1,...,L)
are auxiliary variables used to linearize the computation of these areas
(product of the leftovers variable dimensions), where L = |log,(W)|+1,
W = max{W;; |s=p,...,P=1,j=1,....m}, and, for further reference,

H =max{H,; | s =p,...,P—1,j =1,..,m). The auxiliary variables
i € {01} G =1,....mp, i = 1,...,d) are used to nullify the value
of the area of a leftover at instant P if it cannot fit any item from the
catalogue.

The problem consists in minimizing

P—1 myg P—1 myg mp
Z ZC:J‘VV:,'H:J' z zcsjVV:jH:j”:j Z Cpi¥j 3
s=p j=1 s=p j=1 j=mp+l
subject to
ﬁlS
Yvgy=ls=p...P=1i=1_.n, 4
j=1
Ug 2 Vg, s=p,....,P=1, j=1...m,i=1..,ng, (5)
N
Uy < Y vy s=p, P, j=10m,, (6)
i=1
0<t;<H and0<r; <W j=1,...,m, )
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1
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Si
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WA= vg)+ A =vg) + mgy + (1 —7)] .
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(12)
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fors=p,....,P-1,j=1,....m,i=1,...,n,i'=i+1,....n,

0<w, <Hpjand Hp; —(1-0,,)H <w;, <0;,H for j

=mp+1,... 0pf=1,..,L, (13)

W; <Wp; + W(l=¢;)and h; < Hp; + H(1 = ¢;;) for j
=mp+1,....0p, i=1,...,d, a4

L d
0<y, < zzf—lwﬂ, and y; < <2Cji> WH for j=mp+1,...,70p,
/=1 i=1
(15)
and
L
Wpy =3 2/710,, for j=mp+1,....mp. (16)
/=1
The objective function (3) is given by the cost of the used pur-
chasable objects multiplied by a strict upper bound on the value of
the leftovers at instant P minus the value of the leftovers at that
instant. Assuming integrality of the constants that define the instance
(see Birgin et al., 2020, §3.7), this composition has the desired effect
of minimizing the cost of the purchased objects and, among solutions
with the same cost, maximizing the value of the leftovers at instant P.
Constraints (4) say that each item must be assigned to exactly one
object. Constraints (5) and (6) say that an object O, y is used (i.e. u; ;= 1
if and only if at least an item is allocated to the object. At a first glance,
since the cost of the used objects is being minimized, constrains (6)
may appear to be superfluous. However, forcing u,; = 0 when no item
is assigned to object O;; prevents purchasing and cutting an object to
which no item is being assigned in period s. Constraints (7) define
the height #;; of the top leftover and the width r; of the right-hand-
side leftover of object O, e Constraints ((8),(9)) assume, without loss
of generality, that objects have its bottom-left corner in the origin of
the Cartesian two-dimensional space. Constraints ((8),(9)) say that if an
item Z; is assigned to an object O;;, that has dimensions W,; and H,;,
then the center (x;, y,;) of the item must be placed within the cutting
area of the object that goes from (0,0) to (W,; —r;, H;; —t,;). Moreover,
the constraints say the center of each item must be far from the borders
of the cutting area, so the whole item can be placed within the object’s
cutting area. In constraints (10), restrictions on the dimensions of the
leftovers of purchasable objects with positive expiration date are given;
while in (11) the same is done with the dimensions of leftovers of ob-
jects that are leftovers of previous periods. The difference is that, in the
first case, leftovers of a purchasable object must have null dimensions
if the purchasable object is not used (purchased); while, in the second
case, if an object that is a leftover is not used and its expiration date
is strictly positive, then it must pass to the next instant as its own top
or right-hand-side leftover. Constraints (12) model the non-overlapping
of items assigned to the same object. Constraints ((13)-(16)) model the
value y; of the jth leftover of the last instant P, i.e. object Op;. Recall
that, in case a leftover can fit at least an item from the catalogue, its
value is given by its area (product of its variable dimensions) times
the value per unit of area of the purchasable object that generated the
leftover. Otherwise, the value of the leftover is null. (See Birgin et al.,
2020, §3.7.1 for details.) In ((13)-(16)), the index j starts from mp + 1.
This is the same as saying that it starts at 1, since mp = 0 by definition.
However, we opted by writing this way because it simplifies the re-
definition of the meaning of variables y in the next section. Note also
that variables w, 0, ¢, and y, differently from all other variables in the
model, do not have an index s that relates them to an instant of the
multi-period scenario. This is because they all refer to the last instant P.
Note that the areas of the leftovers of the last instant of the considered
horizon play a fundamental role in the objective function (3); while for
all other instants (including instant P) only the (variable) dimensions
of the leftovers are required, but not their areas.
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3. Forward-looking proposed heuristic

The mixed integer linear programming (MILP) problem (3)—(16)
will be named M(p, P) from now on. This notation allow us to refer
to the single-period problem M(x,x + 1) for some « € {p,..., P —1}.
In problem M(x, x + 1), it is assumed that (a) all decisions of instants
s =p,...,k — 1 have already been taken; (b) quantities and dimensions
of the ordered items and available objects (that may be purchasable
or leftovers from previous periods) of instant x are known; and (c) the
last instant of the considered horizon is pushed back and artificially
considered as if it were P = k + 1. Thus, the single-period prob-
lem M(x,k + 1) coincides with the single-period problem introduced
in Andrade et al. (2014). This means that problem M(k, x+1) consists in
determining a cutting pattern to produce all items ordered at instant «
minimizing the cost of the purchased objects and, among solutions with
minimum cost, choosing one that maximizes the value of the leftovers
at instant « + 1. The particularity of M(x,x + 1) with respect to the
single-period problem introduced in Andrade et al. (2014) is that in
M(k,k + 1) there are some objects that can be used for free. This is
because the summation in (3) goes from 1 up to m,; meaning that the
costs of objects numbered from m, + 1 up to m,, that are the leftovers
of previous periods, are not included in the objective function. Special
attention must also be given to the role of variables y ; in Mk, x + 1)
On the one hand, in M(p, P), their indices goes from 1 (because mp =0
by definition) to /mp and they represent the areas of the leftovers at
instant P. On the other hand, in M(x, x + 1), since P is redefined as if
it were k + 1, the indices of variables y go from m, ,; + 1 to /m,,; and
variables y represent the areas of the leftovers at instant « + 1.

If we assume that the available computational capacity is enough
to solve (with an exact commercial solver) instances with no more
than a single period, a heuristic approach to tackle the original multi-
period problem must be considered. At each instant «, a decision has
to be made. The decision consists in selecting a set of objects (between
the m, purchasable objects O, j for j = 1,...,m, or leftovers O, y for
j = mg+ 1,...,m, from previous periods) and a cutting pattern to
produce, along period [k, k + 1), the n, items ordered at instant x. The
simplest (matheuristic) approach would be to solve the single-period
problem M(k,« + 1), for k = p,..., P— 1. Substituting P by x +1 in (3),
we have that the objective function of problem M(x, x + 1) is given by

KMy Ko myg ';'x'+l

(Z )y cstsstf> (Z )y Cstijsj“sj) - Y ey an
s=p j=1 s=p j=1 J=myeq1+l

Since in problem M(k, k + 1) it is assumed that all decisions of instants

s = p,...,k — 1 have already been taken, we have that u; for s =

p,....k —1and j = 1,...,m, are constant. Thus, minimizing (17) is

equivalent to minimizing

my My
CKZCKJ»WW-HW-MW-— 2 et V)o (18)
j=1 JEme+l

where, as in (3),

3

s

C. =

K

e ;WiiHy;

M-

5

<~
I

P j=1
is a constant. Note that C, corresponds to the total cost of all pur-
chasable objects existent from the first instant p up to instant «.
Therefore, it is a strict upper bound on the value of the leftovers that
could have been generated up to instant x+1. Thus, multiplying the first
summation in (18) by C, has the desired effect of making one unit of
this summation to be more relevant that the whole second summation
in (18). It is in this way that the cost of the used purchasable objects
is minimized and, among solutions with minimum cost, a solution
that maximizes the value of the leftovers at the end of the considered
horizon, in this case instant k+1, is sought. Note that this interpretation
requires the first summation in (18) to assume integer values only;
see Andrade et al. (2014) for details.
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The main drawback of a myopic/greedy strategy like the one de-
scribed above is that the overall cost is not being minimized at all.
This strategy was used to find the solution depicted in Fig. 3(a) to
the instance described in Fig. 2. Its flaw is to ignore the effect in the
future of the decisions made at each instant «. Fig. 3(b) shows that,
by buying a more expensive object at instant ¥ = 0, a better solution
can be found. In addition, note that, at each instant «, the number of
available objects m,. is finite. If we redefine m; = 0 for the instance
in Fig. 2 (i.e. no purchasable objects available at instant x = 1), then
the choice of purchasing the small object O, at instant ¥ = 0 produces
an infeasible solution. This is because the 3 x 6 leftover of O, is not
enough to produce the items ordered at ¥ = 1 and, since we redefined
m; = 0, no other object is available at x = 1. So, the myopic approach
is unable to find a feasible solution to the modified instance.

Assume that we are at an instant « and that at that instant there
are two different objects (one cheaper and smaller and another more
expensive but larger) that can be used to produce the n, ordered items.
Buying the cheapest object would be the myopic choice. However,
assume that buying and using the more expensive object produces two
leftovers that, by being used in forthcoming periods, produce an overall
saving. Quantifying this saving and using it to decide which object
to buy at instant x is the looking-ahead strategy we are looking for.
An optimistic view would consist in subtracting from the cost of each
object the value of its leftovers. We say this view is optimistic because
it assumes that 100% of the object’s leftovers will be used to produce
items (and, thus, savings) in forthcoming periods. In a more realistic
view, each leftover has a different utilization rate that depends on its
dimensions and on the ordered items in the forthcoming periods.

At any instant x + 1, objects O, ; with index j between m,; + 1
and m, | + 2m, correspond to the 2m, leftovers of the m, purchasable
objects that were available at instant x. Therefore, at instant «, y,;_,
and y,; correspond to the area of the two leftovers of the purchasable
object O; for j = 1,...,m, (nullified when the object is not purchased
or when the leftover does not fit any item from the catalogue). Thus, if
object O,; is used, then its optimistic amortized cost, that assumes that
100% of its leftovers will be used, is given by

CjWijH jlhej — € j¥aj_1 = CjYaj- (19)

The value of (19) is null if object Oy; is not used because in this
case u.; = yy_; = yp; = 0. If utilization rates 6, ,;_1,6,,; € [0,1]
for j = 1,...,m, were known, then we would be able to compute, at

instant x, the more realistic amortized cost
cjWieiH i — ¢ (5;«.2;717/2,'71 +8,0,72;) (20)

of using object O,; to produce the ordered items. Since we need
the summation of costs to assume integer values, we would approxi-
mate (20) by

e jWijHyjug; — leg; (5&2,'7172]'71 + 5;«,2,‘72]')]- (21)

However, since Y2j-1 and 2 (G = 1,...,m.) are variables of the
problem, (21) cannot be included in the objective function. (It is not
a linear function of continuous and integer variables.) Thus, we need
new integer variables A s U=1..,m) and constraints

A < (8pnj17ajmt +8e0i1a;) for j=1,...,m,; (22)
so we can write the approximation (21) of (20) as

e j Wi Hyjltej — 4. (23)
We call (23) the amortized cost of object O, e Thus, including estima-
tions of the leftovers utilization rates, the objective function (18) of
problem M(x, k + 1) can be substituted by

My

Cotl, Y 24)

Jj=m+1

mK
Ce D (exj Wi Hyjuty = 4) =
=1
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Fig. 4. Illustration of a small instance with p =0, P = 3. The figure displays the available purchasable objects and the ordered items at each instant s € {p,..., P —1}.

We call M(S; k, k + 1), the single-period problem M(x, x + 1) in which
the objective function is replaced with (24) and constraints (22) are
included. Note that (22) and, in consequence (24), depends on the
unknown constants &, ,;_; and &, ,; for j =1,...,m,.

Let us illustrate the idea of amortized costs with an example. Fig. 4
displays the available purchasable objects and the ordered items of a
small instance with p = 0, P = 3, and ¢ = P — p = 3, meaning that
usable leftovers generated at any period remain usable up to instant P.
The picture shows the available purchasable objects and the ordered
items at each instant s € {0, 1,2}. The numbers of available purchasable
objects and ordered items at each instant are given by my, = 3, m| =
m, =1 and ny =1, n; = 3 and n, = 2, respectively. The cost per unit of
area of all the objects is one (i.e. cy; = cgy = ¢g3 = ¢} = ¢o; = 1) and
the catalogue with d = 2 item is composed by two items with w, =7,
h =4, w,=6,and h, =5.

At instant s = 0, item I,,; can be assigned to any of the three avail-
able purchasable objects O, O,, or O;. Dashed regions in Fig. 5(a—c)
represent the usable leftovers in each possible assignment. In case (b)
there is only a top usable leftover simply because W), = wy,. In case (a)
there is also a top usable leftover only. This is because the right-hand-
side leftover has width W, —w,, < min{w,, w,}. Thus, it cannot fit any
item of the catalogue and, therefore, it is not usable. In case (c), the
situation described in case (a) occurs for both, the top and the right-
hand-side leftovers; thus none of them are usable. Since all the three
objects have a unitary cost per unit of area (i.e. ¢y; = ¢y = cp3 = 1),
purchasing objects O, Oy,, and Oy; costs Wy, x Hy, =21 x 17 =357,
Wy X Hyy = 19 X 19 = 361, and Wy x Hy; = 24 x 13 = 312,
respectively. The greedy choice mandates to buy object O, that is the
cheapest one. However, assuming that usable leftovers will be 100%
used to produce items in forthcoming periods and reducing the value of
the leftovers from the cost of their respective objects, we obtain, for the
configurations depicted in Fig. 5, the amortized costs 357—21 x 6 = 231
and 361 — 19 x 8 = 209 for objects O, and O, respectively. The
amortized cost of object Oy; whose usage generates no usable leftovers
coincides with its actual cost. Thus, the optimistic forward-looking
approach would recommend to purchase object O,.

If the myopic approach is applied to the instance of Fig. 4, then the
solution found is to purchase object O; at instant s = 0 and objects
0O,, and O,, at instants s = 1 and s = 2, respectively. This solution
has an overall cost of 592 and has no usable leftovers at instant s = 3.
If the optimistic forward-looking approach, that assumes that 100% of
the usable leftovers will be used in forthcoming periods, is used, then
the solution found is the one illustrated in Fig. 6(a). (To simplify the
presentation, unused objects are not being displayed in the figure.) In
this solution, the object with the smallest amortized cost is chosen at
instant s = 0, i.e. object O,. At instant s = 1, object O, is purchased
and ordered items are produced from the purchased object and from the
leftover of the previous period. At instant s = 2 no object is purchased

and the ordered items are produced from a leftover of the leftover of
the object bought at instant s = 0. The overall cost of the solution is
521 and a leftover with value 70 remains available at instant P = 3.
(This solution is clearly better than the solution obtained by the myopic
approach.) However, it can be noted that the assumption that 100% of
the leftover of object Oy, would be used in the next periods turned out
to be false. In fact, the leftover of area 152 was used to produce items
whose areas totalize 102, i.e. an utilization rate of 102/152 =~ 0.67. If we
consider this utilization rate for object @,, then its amortized cost for
the configuration depicted in Fig. 5(b) becomes 361 — 102 = 259. The
amortized cost of object @, (for the configuration in Fig. 5(a)) remains
the same, i.e. 231, since there is no new information to update the
presumed utilization rate of 100% of its usable leftover. The amortized
cost of object @y; (for the configuration in Fig. 5(a)) continues being
312 as well. Thus, if the problem is solved once again, object O, is
chosen at instant s = 0 to produce the ordered items of instant s = 0.
Then, its leftover is used to produce all ordered items of instant s = 1;
and object 9,, is purchased to produce the items ordered at instant s =
2. This solution, depicted at Fig. 6(b), has an overall cost of 477 and
it has no usable leftovers at instant s = 3. In this solution, the actual
utilization rate of the leftover of object O, is 314/357 ~ 0.88; which
increases its amortized cost for the configuration depicted in Fig. 5(b)
from 231 to 357 — |(314/357) x 126] = 247. Anyway, it continues to
be the cheapest purchasable object at instant s = 0. Thus, a new cycle
would produce the same solution.

The proposed forward-looking matheuristic approach consists in a
sequence of training cycles. In each cycle, the P — p single-period
problems M(S,x,x + 1) for k = p,...,P — 1 are solved with fixed
values of 6,,;_; and 6, ,; for x = p,...,P—1land j = 1,...,m.. In
the Oth cycle, 5 o= 60 = &, for all k and j, where Sini €
[0,1] is a given constant At the end of the nth cycle, it is possible to
compute the actual fractions fl, " and f . of each of the two leftover
Octtmyy+2j-1 A Oy 42 of a purchasable object O,; that were
effectively used to produce items in forthcoming periods for all x and
Jj- Note that here we are talking about items directly produced from the
leftovers O,y 1, +2j-1 a0d Oy, +2; and also about items produced
from leftovers of these leftovers up to & periods after purchasing the

purchasable object O,;. Thus, each 5" 21 and 6 ,; can be updated

using fK 21 and f i In particular, we deflne
n+l o _ " n N+l _ n n
6}(’21._1 = (1—6”)5]( \to f 21 and 6’(’2/. = (1—6")5’(’2j+a’7fm2j, (25)

where ¢ € (0, 1) is a given constant and ¢” means ¢ to the power of 7.

This means that, at the end of the nth cycle, new estimations 5”+l_l

and 6"2 of the utilization rates of the two leftovers of object O,; for

all k¥ and j are computed as convex combination (parameterized by o)

of their previous values 6" .. and §" . and their actual values f"
Kk,2j—1 K,2j k,2j—1

and f ;’ 2 in the solution found in the current cycle. Since consecutive
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Fig. 5. Dashed regions represent the usable leftovers in the assignment of item 7, to the three purchasable objects available at instant s = 0.
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Fig. 6. Different feasible solutions to the instance of Fig. 4. (a) Solution obtained with the optimistic forward-looking approach in which it is assumed that 100% of each usable
leftover is used to produce items in forthcoming periods. (b) Solution obtained with an adaptive forward-looking approach that cycles updating the utilization rate of the leftovers.
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cycles with the same values of §’s produce the same solution, it makes
sense to use

7+1 _s"
K,2j—1 K,2j—1|’

+1
{k=p,..., PIIl]a:j'(:],...,m,() { 52,2]‘ - 5:v2j)} <e (26)
where ¢ > 0 is a given constant, as a stopping criterion.

The forward-looking approach considers the utilization rates of
the top and the right-hand-side leftovers of purchasable objects. We
say these are first-order leftovers. In opposition, when a leftover is
a leftover of a leftover, we say it is a high-order leftover. When an
item is produced from a first-order leftover, its area plays a role in
the utilization rate of the first-order leftover itself. On the other hand,
when an item is produced from a high-order leftover, its area plays a
role in the utilization rate of the first-order leftover that is the ancestor
of the used high-order leftover. Therefore, computing the utilization
rate of the first-order leftovers requires to keep track of their successor
leftovers or, equivalently, to keep track of the ancestors of the high-
order leftovers. Assume we are in the nth cycle of the forward-looking
approach and that the current instant is instant . After having solved
the single-period problem M(§", k, k + 1) we proceed as follows. (The

supra-index x will be omitted for simplicity.) Let j, < j, < - <
Jm, be the indices of the /%, objects that can generate leftovers, that
correspond to the indices j of objects Oy; (G = 1,...,m.) such that

e,; > 0. Note that if j, <m,, then O is a purchasable object and its
leftovers are first-order leftovers, while if m, < j, <im,, then O, isa
leftover and its leftovers are high-order leftovers. For each object O, ;,
generating leftovers, its leftovers (objects of the next period) are named
Oitmgy+26-1 a0 Oy 1o For all j <m,, we set the area of the

two corresponding first-order leftovers as

At 42k=1 = Vi +2j,—1 and Aty 42k = VY p1 42j30 @7)

initialize their used area as

et Lmyy +2k—1 = Qe lmy 42k = 0, (28)

and set their ancestors (or origins) as the purchased object that gener-
ated them, i.e.

Ot Lmgyy 42k=1 = O Ly 42k = (K5 i) 29

For all j, > m,, we make the two corresponding high-order leftovers
inherit the ancestor of the leftover O, ; that is generating them, i.e.

Okt lmy 42k=1 = O lm 42k = Ok - (30)

(Note that the “ancestor” is a pair that saves the instant and the index of
the purchasable object from which the leftover derives.) Finally, taking
into account the items produced in the single-period problem that was
just solved, we must update the used area of the first-order leftovers of
all preceding periods. For each item Z,; (i = 1,...,n,), we proceed as
follows. Variables v,;; € {0,1} indicate to which object the item was
assigned. By (7), only one of the v,;; is equal to one and all the other
are null. Let j be the index (between 1 and ,) such that v,; = 1.
This means that the item was assigned to object O, ;. If j < m,, then
the object is a purchasable objects and there is nothing to be done.
Otherwise, item Z,; was produced from a leftover. So, we add its area,
given by w,; X h,;, to the used area of the ancestor o,; of O, i.e.

Ki>

; H W X hy. (BD

Oy 0

(Note that o, ; is a pair of the form o, ; = ([o,;];, [0,;],)- So, notation ay,,
means ag,, ) ]’[Ow]z).) At the end of the current 5th cycle, we are ready
to compute the actual utilization rates of the first-order leftovers given
by

At Lmyy +2j~1

A

et L myey +2)

) (32)

n_ no_
fenjo1 = and fen; =

K+1me 1 +2j-1 Kk+lme 1 +2j

Then, the §’s are updated as in (25). If (26) holds, the method stops.
Otherwise, we update n < n+ 1 and start a new cycle. The method also
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stops if in ten consecutive cycles the best solution found so far is not
updated. Algorithm 1 summarizes the whole procedure.

4. Numerical experiments

In this section, we aim to evaluate the performance of the proposed
forward-looking approach. The single-period models M(k,x + 1) and
M(S,k,k + 1) were implemented in C/C++ using the ILOG Concert
Technology. The myopic and the proposed forward-looking matheuris-
tic approaches were also implemented in C/C++. Models and code are
available at https://github.com/oberlan/bromro2. Code was compiled
with g++ from gcc version 7.5.0 (GNU compiler collection) with the
-03 option enabled. Numerical experiments were conducted using a
machine with Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz with
160 GB of RAM memory, and Ubuntu Server 20.04.4 operating system.
Single-period instances within the myopic and the forward-looking
approaches were solved using IBM ILOG CPLEX 22.1.0. A solution is
reported as optimal by CPLEX when

absolute gap = best feasible solution — best lower bound < €,

or

. |best feasible solution — best lower bound|
relative gap = - - <€, (33)
10~10 + |best feasible solution|

where, by default, £, = 107° and ¢, = 107, and “best feasible
solution” means the smallest value of the objective function related to a
feasible solution generated by the method. The objective functions (3)
and (24) of models M(x,x + 1) and M(S,k,« + 1), respectively, for
Kk = p,..., P — 1, assume large integer values at feasible points. Thus,
a stopping criterion based on a relative error less than or equal to
£, = 107 has the undesired effect of stopping the method prematurely.
On the other hand, due to the integrality of the objective function
values, an absolute error strictly smaller than 1 is enough to prove
the optimality of the incumbent solution. Therefore, in the numerical
experiments, we considered £, = 1 — 107 and ¢, = 0. In addition,
NopeFieIno and WorkMEM parameters were set to 3 and 32,000, respec-
tively; so the Branch & Bound tree is partially transferred to disk if
memory is exhausted. All other parameters of the solver were used
with their default values. This includes the deterministic parallel MIP
optimizer to solve a mixed integer programming problem.

4.1. Parameters tuning

In a first set of experiments, we aim to analyze the behavior of
the forward-looking approach for variations of its two parameters &,
and o. Recall that 6;; € [0,1] corresponds to the initial value of
the leftovers utilization fraction; while ¢ € (0,1) plays a role in the
utilization fraction update rule in (25). Preliminary results, focused
on avoiding premature terminations and thus obtaining good quality
solutions, led us to set ¢ = 0.01. In the numerical experiments of
this section, we considered the twenty five instances with four periods
introduced in Birgin et al. (2020), varying their leftovers “expiration
date” parameter ¢ € {1,2,3,4}. All instances have up to 3 objects
and up to 9 items per period. For completeness, tables describing
each instance are given in Appendix. The experiments in Birgin et al.
(2020) show that, when applied to these one hundred instances, CPLEX
with a CPU time limit of two hours found an optimal solution in 91
cases. Therefore, we applied the forward-looking approach with all
combinations of §;,; and ¢ € {0.5,0.55, ..., 1.0} to these 91 instances and
computed the gap to the known optimal solution computed by CPLEX.

Fig. 7 (top) shows the average gap (over the 91 instances) for
each combination of §;;; and . The figure shows that best results are
obtained for the combination (§;,;,6) = (0.9,0.9). The graphic also
shows that, as desired, small variations in the parameters produce
smalls variations in the average results of the method. It should be
noted that the number of cycles (or iterations) # that are performed
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Algorithm 1: FORwARD-LOOKING APPROACH

Input: Let 6;;
j=1,..,
Output: A solution to the multi-period problem M(p, P)

1 71« 0// set the cycles’ counter

€(0,1), 0 €(0,1), and ¢ > 0 be given algorithmic parameters. Let p, P, m,, n,,
me,i=1,....,n.),d, w;, h; (i =1,...,d), and ¢ be given data describing an instance of the multi-period problem

Wej» Hejs ¢ js Wi By (k=p,...,P—1,

// initialize the estimated utilization rates of the first-order leftovers of all periods

2 5"

e 2j-1 P=1,j=1,....,m)

<G and 5], « &y (K =p,...

3 repeat

// set first-period objects’ number and dimensions (all of them are purchasable objects)

4 Set m, < m, and VT/N<—I/VN and Hpj<—HW- G=1,....m,)
5 ey« ¢&(=1..,m)// initialize their validity
6 forx=p,...,P-1do
7 Solve M(6";k,k + 1) // solve the xth single-period subproblem

// for each item produced in the period
8 fori=1,...,n. do

// set j as the index of the object O, to which item I,; was assigned

9 Let j be the only index for which v,;; =1

// if the object is a leftover
10 if j > m, then

oL

12

Compute 71, and j; < j, <+ < j such thate,

13 fork=1,...,Mm, do
// leftovers of object O, are named O,
if j, <m, then

K+Lmy, +2k—
14

15
used area, and set their common ancestor
16 else

. i

According to (30), set their common ancestor

18

Set mx+1 <My +2mkr WK+1,] -«
W r

K

19

20

utilization rate
forx=p,...,P—1do
for j=1,....m. do

21
22
23

24
25 until stopping criterion (26) holds

, and O

// add the item’s area to the used area of the leftover’s first-order ancestor
According to (31), update the used area of the leftover’s first-order ancestor

>0 // objects generating leftovers
// process the leftovers to be used in forthcoming periods

K+Lm, +2k

// leftovers are first-order (produced from a purchasable object)
According to (27), (28), (29), for the two first-order leftovers of object O

«.j,» compute their area, initialize with zero their

// leftovers are high-order (leftovers of leftovers)

// set the two leftovers’ validity as their common ancestors’ validity reduced by one

| Let (v.0) = 0pyim, 42k St epim, vok1 —ee—land ey, 1o < —1

// set next-period objects’ number and dimensions (purchasable objects and leftovers)

vy and Hyy; — Heyy s (G=1,...,m,,), and, following constraint (11), set the dimensions
+1yand Heyy o G=mey +1,...,m,) as the dimensions of the corresponding leftovers

eery =S G=1..,my) // initialize the next-period purchasable objects’ validity

// compute the first-order leftovers’ actual utilization rate of the cycle and update their estimated

L According to (32), (25), compute f;’:,Zj—l and fg’zj and then compute 52;_1 and 5}'1;

Check the stopping criterion (26) and, if does not hold, update the cycles’ counter n < 5 + 1

26 return the computed solution to the multi-period problem M(p, P) as the composition of the solutions to the single-period subproblems

M@k, k+1)fork=p,...,P—1

until the satisfaction of the stopping rule (26) depends on §;; and o.
Fig. 7 (middle and bottom) displays the average number of cycles #
and the average elapsed CPU time in seconds, as a function of &,
and o. On the one hand, the CPU time has a low dependence on ¢
and, roughly speaking, is an increasing function of §;,. On the other
hand, the number of cycles has a low dependence on &;,; and increases
as o increases. Note that, when ¢ = 1, the rule (25) reduces to, at
each cycle, discarding information of previous cycles and defining the
utilization fraction as the actual utilization fraction of the cycle. In this
case, the stopping rule (26) is satisfied if and only if the utilization rates
of all objects are the same for two consecutive cycles. Fig. 7 shows that,
actually, this phenomenon occur; but it produces a premature stopping
with lower quality solutions. Anyway, regardless of the metrics related
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to computational cost, based on the quality of the solutions obtained,
we selected (8;,;, ) = (0.9, 0.9) for the rest of the experiments.

Fig. 8 shows the data of Fig. 7 (top and middle) in a different
way. Using bi-objective optimization concepts, it illustrates the Pareto
frontier for the (6;,, o) pairs using as conflicting objectives the computa-
tional effort (CPU time) and the result obtained (gap). The figure shows
all pairs (6;,,0) considered, with §;,; and ¢ € {0.50,0.55,...,1.00}.
Each point is represented by a small ball such that, the outer color
corresponds to §;,; and the inner color corresponds to o. The figure
clearly shows that, by choosing (8;,;,0) = (0.90,0.90), we sacrifice
performance and opt for the combination that delivers the best results
with a high computational cost. The figure also clearly shows that,
by sacrificing the quality of the solution found, it is still possible to
find good quality solutions for much less time. For example, the pair



E.G. Birgin et al.

Expert Systems With Applications 223 (2023) 119866

20| 7
—o— (.50
18 |
< —+— (.55
%16* —v— 0.60
o0
%14* —— (.65
g —=— 0.70
L 12
>
< —+— 0.75
10 0.80
N —— 085
0.90
—u— (.95
_ 50 —— 1.00
o
)
2
< 401
£
2,30
z
L
< 201
101
121
2]
(=1
R
2
£ 10
£
)
o0
S 81 —— -
)
£ . —_— —
6_
050 055 060 065 070 075 080 085 090 095 100
Bus

Fig. 7. Average gap (to optimal solution computed with CPLEX), CPU time (in seconds), and number of cycles of the forward-looking approach for variations of its parameters §;;

and o.

(6;ni»0) = (0.75,1.00) manages to find solutions with very little loss of
quality (the gap increases from 7.57% to 8.52%) with a two-thirds
reduction in time. A four-fifths reduction in time can be obtained if
solutions with a gap of 18.54% are satisfactory or if CPU time is a
limiting factor.

4.2. Forward-looking versus myopic approach

In a second set of experiments, we compare the introduced forward-
looking approach with (6, ¢) = (0.9,0.9) against the myopic approach,
that only differs with the forward-looking approach in the objective
function that is minimized in each subproblem. In this comparison,
a new set of thirty instances with four, eight, and twelve periods,
ten of each type, is considered. Instances were generated with the
random generator introduced in Birgin et al. (2020). All instances,
larger than the ones considered in Birgin et al. (2020), have up to 5
objects and up to 15 items per period. For the cases with four periods
we consider instances with ¢ € {1,2,3,4} and for the cases with
eight and twelve periods we consider ¢ € {1,2,3,4, P}, totalizing 140
instances. Experiments that will be shown in the following sections
show that CPLEX with a CPU time limit of two hours was able to
find a guaranteed optimal solution in only 15 of the 140 instances. In
order to allow reproducibility, a table describing each instance is given
in Appendix. Table 1 shows the number of binary variables, continuous
variables, and constraints of each instance. Note that instances with
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twelve periods and & = P have around 400,000 binary variables, 300,000
continuous variables, and 4,000,000 constraints.

Tables 2-6 show the results. The tables show, for the myopic
and the forward-looking approaches, the best objective function value
found (i.e. the value of (3)), the corresponding cost of the purchased
objects, the corresponding value of the leftovers at the final instant of
the time horizon, and the CPU time in seconds. In addition, for the
forward-looking approach, tables show the gap given by
100 < Ffloo;;_ meopic > %7

myopic

(34

where F; . is the best objective function value found by the forward-
looking approach and F,. is the best objective function value found
by the myopic approach. It is important to notice that, by definition,
the objective function (3) is dominated by the objects’ cost (which is
multiplied by an upper bound on the value of the leftovers at the last
time instant); while the value of the leftovers at the last time instant
plays a “tie-breaking role”. Thus, a tiny gap may represent a situation
where both methods have found a solution with the same cost of the
objects but with a relevant difference in the value of the leftovers at
instant P. Also note that Tables 2-6 do not include averages in the
columns corresponding to the leftovers values. This is because, in the
considered problem, the main goal is to find a solution that minimizes
the overall cost of the objects and, among solutions with minimum
costs of the objects, a solution that maximizes the value of the leftovers
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Fig. 8. Each pair p= (6

ini

,0) is associated with an average CPU time #(p) and an average gap g(p). We say that a pair p is dominated if there exists another pair ¢ such (a) #(q) < #(p)

and g(q) < g(p) or (b) 1(q) < t(p) and g(q) < g(p). This image highlights the non-dominated pairs.

Table 1
Number of binary variables (BV), continuous variables (CV), and constraints (CO) of the thirty considered instances.
Inst. E=1 E=2 £=3 E=4 E=P
BV cv Cco BV Ccv Cco BV (9% CcO BV Ccv CO BV Ccv CO
1 369 150 2,664 609 294 5,688 897 518 8,168 1,185 838 9,352
2 270 150 1,683 498 310 3,787 786 566 5,555 1,218 1,046 7,331
3 298 176 1,854 450 304 3,122 626 496 4,074 754 656 4,634
3 4 397 152 2,649 529 240 3,805 721 384 5,205 1,041 704 6,453 Since instances from 1
£ 5 487 150 3,752 695 254 6,932 951 430 9,396 1,335 910 11,076 to 10 have P =4 periods,
& 6 290 202 1,809 546 402 3,845 898 754 5,757 1,042 914 6,349 the case & = P coincides
N 7 572 214 4,443 844 358 8,667 1,164 630 11,683 1,308 790 12,275 with the case & =4.
8 503 154 3,328 675 282 5,456 979 426 11,560 1,235 746 12,680
9 318 196 2,044 538 380 3,672 706 556 4,520 1,138 1,036 6,296
10 345 162 2,072 525 290 3,584 749 434 5,784 1,069 754 7,032
11 1,028 444 9,014 1,848 868 19,982 3,368 1,668 40,422 5,672 2,820 70,806 28,904 21,764 265,142
12 1,116 394 9,701 1,872 754 20,881 3,040 1,378 35,801 4,848 2,338 58,953 30,096 19,874 324,841
13 593 362 3,824 1,105 722 8,004 1,889 1,298 14,092 3,281 2,418 22,780 20,625 16,818 113,308
3 14 921 374 7,804 1,609 734 17,444 2,721 1,358 32,308 4,673 2,414 60,884 23,297 18,286 238,260
2 15 986 390 8,311 1,702 742 17,911 2,982 1,430 33,255 5,334 2,710 62,487 25,910 17,558 228,343
& 16 974 408 7,886 1,782 840 19,586 2,982 1,528 36,114 5,174 2,616 69,122 31,094 26,168 257,986
@® 17 1,251 394 10,836 2,071 714 26,772 3,455 1,386 50,388 5,631 2,282 91,972 27,359 16,362 432,452
18 839 380 6,413 1,467 756 13,393 2,483 1,460 23,449 3,859 2,420 36,057 18,547 15,924 130,777
19 1,020 400 8,012 1,660 720 16,656 2,780 1,296 31,432 4,620 2,320 53,288 22,956 17,488 202,888
20 1,141 414 10,206 1,825 774 19,074 2,977 1,350 34,826 5,089 2,374 66,490 30,401 19,334 377,914
21 1,184 514 8,941 2,056 978 19,957 3,728 1,842 42,077 6,784 3,442 82,925 343,904 246,834 3,855,917
22 1,559 576 13,531 2,595 1,080 29,079 4,483 1,944 58,567 7,827 3,544 108,343 307,763 248,728 2,474,167
23 1,158 530 8,965 2,066 1,050 19,405 3,794 1,994 40,397 6,626 3,594 73,149 326,178 295,370 2,276,765
-§ 24 1,258 562 9,857 2,198 1,058 21,645 3,838 1,986 40,837 7,086 3,714 81,909 370,446 314,050 2,672,821
g 25 1,443 584 12,671 2,403 1,096 25,275 4,283 2,104 50,827 7,387 3,928 88,299 359,931 319,320 2,927,211
: 26 1,230 524 9,706 2,218 1,028 22,226 3,970 1,892 44,954 7,202 3,588 83,226 395,682 263,684 3,072,506
— 27 1,452 558 11,777 2,480 1,054 26,525 4,472 2,030 56,773 7,928 3,790 108,821 482,392 405,326 4,270,261
28 1,587 546 13,404 2,567 1,010 28,464 4,471 1,874 59,328 8,135 3,570 119,344 417,927 269,042 5,343,952
29 1,488 656 12,636 2,596 1,224 27,628 4,588 2,264 54,436 8,300 4,152 106,004 480,652 339,576 6,202,740
30 1,299 630 10,782 2,363 1,198 24,670 4,259 2,238 49,086 7,315 4,126 82,830 435,731 336,414 4,289,870

at instant P. Thus, it makes no sense to compare the value of the
leftovers at instant P of solutions with different objects cost. It would
be very easy to construct a solution with high objects cost and plenty of
leftovers at the end of the considered time horizon. Given two solutions,
the one with lower objects cost is better than the other; and in case the
objects cost is identical, the one with the higher value of the leftovers at
instant P is preferable. Solutions must be compared with this objective
in mind; so the gaps must be examined carefully.

12

From what was recalled in the previous paragraph, by the definition
of the problem, to win means to find a solution with strictly lower cost
of the objects or with equal cost of the objects and strictly higher value
of the leftovers at instant P. To tie means to find a solution with the
same cost of the objects and the same value of the leftovers at instant P.
If the method does not win or does not tie, then it loses. In Tables 2-6,
values in bold correspond to the cases in which the method wins or ties.
Table 7 summarizes the results. Each cell of the table is of the form
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Myopic approach versus forward-looking approach considering the scenario with smallest possible use of leftovers, i.e. & = 1.

Inst. Myopic approach Forward-looking approach
Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

1 314,108,050 9,155 0 60.3 400,703,843 11,679 2,647 681.1 27.5688
2 187,422,365 6,715 0 323 187,422,365 6,715 0 101.0 0.0000
3 340,487,089 8,951 0 4.0 340,487,089 8,951 0 266.7 0.0000
8 4 309,586,584 9,677 0 1.4 309,586,584 9,677 0 665.6 0.0000
2 5 444,536,794 15,954 5,462 60.3 182,258,424 6,541 0 1,443.0 —59.0004
& 6 236,240,392 6,246 2,066 0.3 148,039,222 3,914 0 157.4 —37.3353
=~ 7 607,520,858 13,433 0 16.4 607,520,858 13,433 0 664.3 0.0000
8 241,124,382 12,191 1,407 97.6 191,042,687 9,659 2,674 1,927.3 —20.7701
9 226,123,995 4,757 0 0.8 226,123,995 4,757 0 257.8 0.0000
10 354,815,285 10,884 3,115 9.2 354,815,285 10,884 3,115 287.4 0.0000
Avg. 326,196,579 9,796 28.3 294,800,035 8,621 645.2 —8.9537
11 1,550,317,180 16,165 3,310 180.4 1,405,404,040 14,654 2,484 3,136.5 —-9.3473
12 1,625,463,920 17,980 0 105.5 1,764,776,484 19,521 0 2,894.0 8.5706
13 1,102,076,378 11,453 0 0.7 1,102,076,378 11,453 0 660.7 0.0000
3 14 1,423,459,632 16,701 0 19.2 1,360,217,488 15,959 0 2,113.5 —4.4428
2 15 1,156,701,480 15,396 0 160.0 1,110,797,050 14,785 0 3,136.7 —3.9686
& 16 1,037,649,354 12,633 0 165.0 1,261,472,894 15,358 2,510 4,420.4 21.5702
© 17 1,236,188,630 17,285 0 125.1 1,236,188,630 17,285 0 3,102.0 0.0000
18 1,271,449,952 15,649 0 61.7 1,234,400,864 15,193 0 2,565.4 -2.9139
19 1,489,848,521 17,883 2,092 126.1 1,559,998,475 18,725 0 1,814.8 4.7085
20 1,464,089,337 17,855 2,808 63.9 1,555,845,650 18,974 3,376 2,084.8 6.2671
Avg. 1,335,724,438 15,683 104.8 1,337,259,145 15,881 2,649.3 1.5752
21 2,905,035,501 22,879 2,645 61.3 3,088,894,153 24,327 2,345 2,152.5 6.3290
22 2,526,326,584 22,230 1,766 181.7 2,777,141,099 24,437 1,766 2,772.5 9.9280
23 2,554,150,135 21,909 1,085 64.9 2,755,018,560 23,632 0 2,594.0 7.8644
—g 24 2,745,092,742 23,139 2,523 74.1 2,830,037,925 23,855 0 2,670.6 3.0944
'5 25 3,911,466,834 28,039 1,705 137.3 3,423,912,544 24,544 0 3,149.7 —12.4647
:1* 26 3,966,384,615 27,042 735 124.9 4,586,379,445 31,269 1,130 2,847.6 15.6312
— 27 3,462,474,633 26,709 0 241.0 3,674,042,217 28,341 0 3,034.6 6.1103
28 3,134,068,124 28,791 4,972 161.8 2,781,161,944 25,549 0 3,625.9 -11.2603
29 2,682,280,094 19,795 1,791 136.3 2,872,390,812 21,198 1,782 4,662.7 7.0877
30 3,821,604,621 24,685 3,654 182.4 3,730,110,699 24,094 1,911 3,403.1 —2.3941
Avg. 3,170,888,388 24,522 136.6 3,251,908,940 25,125 3,091.3 2.9926
Avg. 1,610,936,469 16,739 88.5 1,635,275,590 16,645 2,109.8 -1.3056

“W/T/L G(%)”, i.e. for each combination of number of periods P €
{4,8,12} and parameter ¢ € {1,2,3,4, P} (comprising 10 instances), it
displays the number of instances in which the forward-looking strategy
wins, ties, and looses (with respect to the myopic approach), and the
average gap given by (34). Figures in the table shows that, the larger
the chance of taking advantage of leftovers (i.e. the larger &), the larger
the number of victories and the larger the gap. This fact is graphically
evidenced in Fig. 9. Clearly, the way to estimate the future impact of
current decisions is heuristic in nature. This fact, associated with an
instance in which there is little chance of using leftovers from previous
periods (small &) occasionally leads the myopic method to obtain better
results. This is an expected behavior that does not diminish the value
of the proposed method. In the case & = P, which is the extreme case of
the type of instances for which the method was developed, the forward
looking approach find better solutions in all instances but one, with an
average gap of, approximately, —15%.

4.3. Assessing the quality of small instances’ solutions

In the previous section, numerical experiments made clear that the
forward-looking approach outperforms the myopic approach; and the
greater the possibility of saving raw material by employing leftovers
(i.e. the larger the parameter &), the greater the advantage of the
method. Since both methods differ in the looking-ahead objective func-
tion being minimized at each period, it is clear that this characteristic
is well succeeded in that which it is intended to accomplish. On the
other hand, we know nothing about how far from the optimal solution
are the solutions that the method finds. In this section we perform
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an experiment comparing the solutions found by the forward-looking
approach with the solutions found with CPLEX.

We consider in this experiment the ten instances with four periods
and ¢ € {1,2,3,4}. These problems, i.e. the corresponding multi-period
models M(p, P), were solved with CPLEX, considering a time limit of
two hours. The left-hand side of Table 8 shows the results. The table
shows the ceiling of the best lower bound, the best objective function
value found, the relative gap (33), and the CPU time in seconds. In
addition, Since the value of the objective function (3) mixes the cost of
the objects and the value of the leftovers at instant P and, thus, it is not
very informative by itself, the table shows the cost of the objects and the
value of the leftovers associated with each solution found. The right-
hand side of the table gathers, from Tables 2-5, the results obtained
by the forward-looking approach. In the right-hand side of the table,
“gap(%)” represents the relative gap between the solutions found by
both methods, computed as

F; - F,
100< tloo; cplex) %’

cplex

(35)

where Fj ., is the best objective function value found by the forward-
looking approach and F,., is the best objective function value found
by CPLEX. The table shows that, within the imposed CPU time limit,
for & = 1,2,3,4, CPLEX closed the gap in 7, 4, 4, and 0 instances (out
of 10) respectively; while the average gap (35) between CPLEX and
the forward-looking approach was 8.9%, 16.5%, 0.8%, and —7.6%. For
the instances with ¢ = 1, the forward-looking approach matched the
solution found by CPLEX in 5 cases of which 4 are known to be optimal;
and none solution was improved. For the instances with ¢ = 2, the
forward-looking approach matched 1 solution and improved other 2
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Table 3
Myopic approach versus forward-looking approach considering the scenario with low use of leftovers, i.e. &£ =2.
Inst. Myopic approach Forward-looking approach
Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

1 300,655,883 8,763 2,647 0.9 300,655,883 8,763 2,647 1,190.8 0.0000
2 183,066,191 6,559 2,058 0.8 187,421,443 6,715 922 557.7 2.3791
3 340,482,337 8,951 4,752 63.4 339,152,364 8,916 3,360 481.9 —0.3906
4 4 309,582,278 9,677 4,306 77.0 277,209,196 8,665 1,484 808.8 —-10.4570
2 5 274,293,216 9,844 0 120.1 182,257,683 6,541 741 1,446.4 —33.5537
& 6 181,132,639 4,789 1,708 2.5 179,167,551 4,737 0 270.3 -1.0849
N 7 527,061,892 11,654 1,912 134.2 634,518,412 14,030 2,368 1,633.8 20.3878
8 166,697,412 8,428 0 38.0 166,697,412 8,428 0 913.2 0.0000
9 226,123,365 4,757 630 7.6 226,122,767 4,757 1,228 458.4 —0.0003
10 284,400,266 8,724 2,134 61.5 284,400,266 8,724 2,134 551.8 0.0000
Avg. 279,349,548 8,215 5 50.6 277,760,298 8,028 831.3 -2.2720
11 1,425,351,269 14,862 3,703 246.6 1,383,057,725 14,421 2,701 2,353.0 -2.9672
12 1,492,298,384 16,507 444 301.6 1,344,578,692 14,873 0 3,650.4 —9.8988
13 1,041,838,902 10,827 0 6.1 741,805,859 7,709 375 1,004.0 —28.7984
g 14 1,151,398,287 13,509 801 55.3 1,253,506,060 14,707 964 2,746.1 8.8682
£ 15 1,190,883,867 15,851 1,763 138.1 1,104,410,088 14,700 912 3,563.9 -7.2613
& 16 1,037,649,024 12,633 330 162.1 1,205,374,215 14,675 935 4,293.6 16.1640
© 17 1,137,778,191 15,909 1,671 190.4 1,153,013,196 16,122 0 7,001.8 1.3390
18 1,203,279,118 14,810 3,762 109.9 1,025,673,954 12,624 798 4,781.4 —-14.7601
19 1,111,449,959 13,341 2,092 194.0 1,183,682,688 14,208 0 4,432.4 6.4990
20 1,282,624,633 15,642 3,725 127.1 1,386,189,384 16,905 3,711 4,830.0 8.0744
Avg. 1,207,455,163 14,389 153.1 1,178,129,186 14,094 3,865.7 —2.2741
21 2,573,632,748 20,269 3,258 137.9 2,737,557,920 21,560 1,520 4,216.8 6.3694
22 2,286,762,128 20,122 2,562 269.2 2,415,976,613 21,259 2,442 3,767.1 5.6505
23 2,324,372,040 19,938 0 234.3 2,297,208,522 19,705 378 6,005.3 -1.1686
—§ 24 2,704,400,499 22,796 2,961 175.5 2,623,019,850 22,110 0 3,472.1 —3.0092
g 25 3,755,224,476 26,919 2,943 190.0 3,016,011,620 21,620 0 5,557.5 —19.6849
:1‘ 26 3,384,818,287 23,077 688 141.9 2,863,535,290 19,523 735 4,755.6 —15.4006
— 27 2,952,610,016 22,776 2,296 309.1 3,082,376,653 23,777 2,296 7,569.5 4.3950
28 2,991,904,474 27,485 2,686 237.9 2,525,893,589 23,204 1,035 3,854.2 -15.5757
29 2,369,810,439 17,489 1,528 246.4 2,572,795,215 18,987 246 6,220.1 8.5654
30 3,189,962,135 20,605 940 181.1 2,682,942,759 17,330 1,191 5,680.2 —15.8942
Avg. 2,853,349,724 22,148 212.3 2,681,731,803 20,908 5,109.8 —4.5753
Avg. 1,446,718,145 14,917 138.7 1,379,207,096 14,343 3,268.9 —3.0405
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Fig. 9. Number of best solutions (including ties) found by the myopic and the forward-looking approaches as a function of the number of periods and the expiration date of the
usable leftovers.

solutions. For the instances with & = 3, the forward-looking approach First of all, we should note that in this experiment we are consider-
matched 2 solutions (known to be optimal) and improved other 3. For ing instances with only four periods, which correspond to the smallest
the instances with ¢ = 4, the forward-looking approach improved 3 instances being considered in this work. Within this set, the cases in
solutions found by CPLEX. which CPLEX wins are concentrated in the instances with & = 1,2,

14
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Myopic approach versus forward-looking approach considering the scenario with medium use of leftovers, i.e. £ =3.

Inst. Myopic approach Forward-looking approach
Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

1 177,005,290 5,159 0 60.6 277,051,660 8,075 1,590 922.0 56.5217
2 183,066,047 6,559 2,202 2.7 170,926,810 6,124 154 355.7 —6.6311
3 340,482,702 8,951 4,387 63.7 205,638,144 5,406 690 306.6 —39.6039
3 4 309,582,332 9,677 4,252 122.0 187,633,080 5,865 0 808.2 —39.3915
2 5 274,289,426 9,844 3,790 120.6 182,257,479 6,541 945 2,669.0 —33.5529
& 6 181,132,281 4,789 2,066 2.4 92,931,111 2,457 0 160.1 —48.6943
=~ 7 352,310,540 7,790 0 136.3 459,767,078 10,166 438 832.0 30.5005
8 166,694,832 8,428 2,580 97.4 143,119,673 7,236 1,171 2,679.7 -14.1427
9 226,122,641 4,757 1,354 9.1 226,122,641 4,757 1,354 347.7 0.0000
10 178,974,000 5,490 0 65.4 178,974,000 5,490 0 314.8 0.0000
Avg. 238,966,009 7,144 68.0 212,442,168 6,212 939.6 —9.4994
11 1,231,334,604 12,839 2,530 152.9 1,165,832,300 12,156 1,036 3,028.8 —5.3196
12 1,555,759,878 17,209 2,558 303.9 1,508,749,798 16,689 2,558 3,621.5 -3.0217
13 920,593,767 9,567 375 52.9 974,574,373 10,128 2,555 1,260.2 5.8637
3 14 1,019,203,389 11,958 867 52.1 1,035,823,553 12,153 943 4,147.4 1.6307
2 15 1,190,882,686 15,851 2,944 256.4 1,048,738,758 13,959 912 4,068.5 -11.9360
& 16 1,210,381,894 14,736 3,674 144.5 1,142,537,743 13,910 1,837 3,256.4 —5.6052
© 17 1,292,683,746 18,075 4,104 243.8 1,126,765,124 15,755 966 3,305.4 -12.8352
18 911,276,358 11,216 1,210 175.0 1,025,673,954 12,624 798 4,028.9 12.5536
19 1,111,449,683 13,341 2,368 208.1 1,008,394,414 12,104 1,930 4,102.8 -9.2721
20 1,218,090,995 14,855 4,150 242.8 1,066,068,178 13,001 821 3,603.0 —-12.4804
Avg. 1,166,165,700 13,965 183.2 1,110,315,820 13,248 3,442.3 —4.0422
21 2,289,085,834 18,028 1,438 176.7 2,340,384,768 18,432 0 4,697.8 2.2410
22 2,073,905,839 18,249 1,766 199.9 2,106,634,923 18,537 2,442 8,231.9 1.5781
23 2,093,542,769 17,958 871 182.5 2,032,571,215 17,435 1,085 7,165.9 -2.9124
—g 24 2,704,399,467 22,796 3,993 194.1 2,374,002,708 20,011 2,277 2,767.2 -12.2170
'5 25 3,374,945,006 24,193 2,687 212.8 2,891,294,796 20,726 2,930 3,949.7 —14.3306
:1* 26 2,790,050,551 19,022 1,299 194.4 2,929,979,126 19,976 674 3,723.2 5.0153
— 27 2,907,754,654 22,430 3,256 320.6 3,085,098,730 23,798 2,596 5,565.1 6.0990
28 2,947,923,296 27,081 6,040 342.2 2,649,225,201 24,337 3,271 3,963.2 -10.1325
29 2,280,785,228 16,832 1,268 249.2 2,174,821,959 16,050 1,191 7,355.1 —4.6459
30 2,677,059,585 17,292 1,395 245.4 2,338,635,390 15,106 0 3,055.4 -12.6416
Avg. 2,613,945,223 20,388 231.8 2,492,264,882 19,441 5,047.4 —4.1947
Avg. 1,339,692,311 13,832 161.0 1,271,674,290 12,967 3,143.1 -5.9121

which correspond to the smallest instances and to the instances in
which there is little space to exploit leftovers. It is not expected the
proposed method to be advantageous when the instance is so small
that it can be solved optimally using CPLEX. On the other hand, the
numbers show that (a) the proposed method finds solutions close to
the optimal solutions when the optimal solutions are known and that,
(b) even considering instances with as few as four periods, the larger
the &, the greater the advantage of using the proposed method.

To corroborate the statements of the previous paragraph, we also
experimented running CPLEX in the 20 most difficult instances, with
8 and 12 periods and ¢ € {4, P}. Table 9 shows the results. In 7
out of the 20 instances with & = 4, CPLEX failed to find a feasible
solution; while it was able to find a feasible solution in the other 13
instances. However, the forward-looking approach found better results
in all these 13 instances, with an average gap of —33.14%. Out of a
total of 20 instances with ¢ = P, CPLEX found a feasible solution in
only 2 instances; and in these two cases the forward-looking approach
found better solutions, with an average gap of —80.68%.

4.4. Discussion concerning computational cost, parallelism and further de-
velopments

This paper presents the first solution method reported in the lit-
erature to solve the multi-period cutting stock problem with usable
leftovers introduced in Birgin et al. (2020). Being the first one, the
numerical experiments of this work focused on getting good quality
solutions, thinking of building a set of problems and solutions that
could later be used as a benchmark for subsequent developments. This
decision was evidenced in the choice of the parameters of the proposed
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method in Section 4.1: a small value for the parameter ¢, which is
directly related to the number of iterations of the method (the lower
the e the more iterations the method makes) and the choice of the
parameters (;,;, 6), where we chose the combination that produced the
best results at a high computational cost. However, the analysis of Fig. 8
showed that we can obtain results with essentially the same quality
using one third of the computational effort and that if computational
effort is a major constraint, we can still find good solutions in up to one
fifth of the computational time.

The introduced method was compared in Section 4.2 with a myopic
method and in Section 4.3 with the solutions found by an exact method
with time limitation. The proposed method found better solutions
than the myopic method, especially in the situations for which it
was developed, i.e., instances in which there are many opportunities
to take advantage of leftovers. However, the comparison with the
myopic method can be considered unfair, considering that the proposed
method uses more time than the myopic method. In this respect, it is
worth remembering that we chose parameters that make the method
expensive, and that solutions of similar quality could be found in a
third of the time. Limiting the time of the proposed method to be
close to the time used by the myopic method would be unreasonable
as it would annihilate its potential advantages. The two methods are
of the rolling horizon type, with the only difference being that the
myopic method takes the best greedy decision at each instant while
the proposed method has a vision of the future that is adjusted over
time. Imposing on the proposed method a time limit equal to the time
of the myopic method would be the same as allowing it to make a single
iteration. In that single iteration, the initial estimate of the utilization
of the leftovers would be used and the final solution would be totally
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Table 5
Myopic approach versus forward-looking approach considering the scenario with high use of leftovers, i.e. £ =4.
Inst. Myopic approach Forward-looking approach
Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time
1 177,003,277 5,159 2,013 68.7 277,048,333 8,075 4,917 1,110.1 56.5216
2 183,066,038 6,559 2,211 2.8 170,926,618 6,124 346 331.7 -6.6312
3 340,482,702 8,951 4,387 63.6 205,637,682 5,406 1,152 304.6 —39.6041
] 4 309,582,269 9,677 4,315 122.0 187,632,447 5,865 633 1,510.7 -39.3917
8 5 274,288,892 9,844 4,324 180.1 182,257,683 6,541 741 1,513.6 —33.5527
& 6 181,131,635 4,789 2,712 2.6 92,930,802 2,457 309 248.2 —48.6943
=~ 7 352,308,306 7,790 2,234 194.4 459,763,070 10,166 4,446 1,421.0 30.5002
8 166,694,832 8,428 2,580 97.7 143,119,381 7,236 1,463 3,001.7 -14.1429
9 226,122,426 4,757 1,569 9.1 226,122,426 4,757 1,569 394.3 0.0000
10 178,973,172 5,490 828 65.6 178,972,994 5,490 1,006 514.3 —0.0001
Avg. 238,965,355 7,144 80.7 212,441,144 6,212 1,035.0 —9.4995
11 1,173,599,085 12,237 2,637 80.9 1,045,086,574 10,897 1,108 3,000.9 —10.9503
12 1,555,759,725 17,209 2,711 307.3 1,283,103,972 14,193 0 5,231.0 —17.5256
13 1,006,137,497 10,456 1,559 61.0 594,580,454 6,179 0 1,498.7 —40.9047
3 14 1,019,202,506 11,958 1,750 211.2 1,034,033,507 12,132 1,117 4,999.5 1.4552
-g 15 1,190,882,363 15,851 3,267 187.3 901,935,429 12,005 221 4,162.6 —24.2633
& 16 1,210,381,894 14,736 3,674 202.0 1,036,005,844 12,613 750 3,397.7 —14.4067
© 17 1,137,777,475 15,909 2,387 289.3 1,083,925,806 15,156 1,002 8,488.7 -4.7331
18 1,203,278,753 14,810 4,127 188.6 925,901,698 11,396 510 4,619.3 —23.0518
19 1,111,449,235 13,341 2,816 208.9 1,026,389,411 12,320 2,109 6,673.1 —7.6531
20 1,282,623,747 15,642 4,611 309.6 1,151,100,925 14,038 1,037 4,336.0 —10.2542
Avg. 1,189,109,228 14,215 204.6 1,008,206,362 12,093 4,640.7 —15.2287
21 2,359,046,839 18,579 3,107 231.3 2,248,327,065 17,707 1,553 3,668.8 -4.6934
22 1,813,887,845 15,961 0 219.4 1,876,619,885 16,513 0 5,023.8 3.4584
23 2,061,483,504 17,683 636 228.8 2,000,862,162 17,163 378 6,223.4 —2.9407
-g 24 2,301,874,270 19,403 635 190.7 2,448,388,251 20,638 879 2,789.5 6.3650
g 25 2,981,413,301 21,372 2,071 144.9 2,704,226,259 19,385 626 3,955.0 -9.2972
:1‘ 26 2,929,977,951 19,976 1,849 255.4 2,499,194,368 17,039 957 4,805.9 -14.7026
— 27 2,698,521,316 20,816 2,476 251.6 2,912,940,914 22,470 2,476 5,023.6 7.9458
28 2,792,803,496 25,656 6,040 343.9 2,569,542,877 23,605 3,003 5,369.5 —7.9941
29 2,491,626,343 18,388 2,821 194.7 2,156,800,182 15,917 1,069 6,318.9 —13.4381
30 2,677,058,625 17,292 2,355 254.6 2,225,775,255 14,377 0 4,611.4 -16.8574
Avg. 2,510,769,349 19,513 231.5 2,364,267,722 18,481 4,779.0 -5.2154
Avg. 1,312,947,977 13,624 172.3 1,194,971,742 12,262 3,484.9 -9.9812
Table 6
Myopic approach versus forward-looking approach considering the scenario with unrestricted use of leftovers, i.e. & = P.
Inst. Myopic approach Forward-looking approach
Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time
11 1,215,891,809 12,678 4,459 192.3 986,583,007 10,287 2,015 3,695.6 —18.8593
12 1,555,758,322 17,209 4,114 306.8 1,328,123,427 14,691 1,737 3,980.1 -14.6318
13 773,366,591 8,037 1,771 68.8 594,578,854 6,179 1,600 1,202.0 -23.1181
] 14 1,135,115,839 13,318 3,937 190.9 900,474,708 10,565 1,372 6,194.6 -20.6711
@ 15 1,190,882,178 15,851 3,452 155.4 874,512,980 11,640 220 3,263.3 —26.5660
& 16 1,210,381,894 14,736 3,674 201.8 909,595,796 11,074 416 6,542.8 —24.8505
® 17 1,137,777,262 15,909 2,600 289.3 1,068,191,648 14,936 1,200 6,391.5 -6.1159
18 1,203,277,781 14,810 5,099 188.4 926,144,408 11,399 1,544 4,402.0 —-23.0315
19 1,111,448,881 13,341 3,170 269.4 914,087,713 10,972 579 7,378.1 -17.7571
20 1,190,621,519 14,520 3,961 305.6 880,914,146 10,743 1,111 4,538.0 —26.0122
Avg. 1,172,452,208 14,041 216.9 938,320,669 11,249 4,758.8 -20.1614
21 1,983,206,578 15,619 328 176.2 1,870,326,188 14,730 832 5,020.4 -5.6918
22 1,813,886,612 15,961 1,233 263.6 1,765,473,725 15,535 1,350 9,743.6 —2.6690
23 1,741,938,045 14,942 315 274.9 1,787,753,330 15,335 970 5,817.6 2.6301
§ 24 2,301,871,943 19,403 2,962 188.4 1,964,238,743 16,557 952 4,650.0 —14.6678
g 25 2,883,203,059 20,668 3,609 205.4 2,428,432,517 17,408 891 8,681.4 —-15.7731
:‘“ 26 2,790,048,502 19,022 3,348 195.0 2,381,267,430 16,235 1,195 6,079.0 —14.6514
— 27 2,727,820,154 21,042 1,600 248.8 2,410,469,370 18,594 1,008 4,717.7 -11.6339
28 2,303,933,956 21,165 3,284 317.5 2,066,194,766 18,981 970 8,722.4 —-10.3188
29 1,989,452,967 14,682 2,079 165.1 1,955,577,574 14,432 1,722 8,361.4 -1.7027
30 2,677,060,181 17,292 799 244.3 2,183,355,005 14,103 940 4,166.0 —18.4421
Avg. 2,321,242,200 17,980 227.9 2,081,308,865 16,191 6,595.9 -9.2920
Avg. 1,746,847,204 16,010 222.4 1,509,814,767 13,720 5,677.4 -14.7267
determined by that arbitrary initial choice. (In particular, if 6,,; = 0 by nature more time-consuming than the myopic method, since it was
were chosen, the solution would coincide with the solution of the designed to make several iterations, each with a cost similar to the cost
myopic method). This discussion shows that the proposed method is of the myopic method, iterations over which the method adjusts its
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Summary of the comparison between the myopic and the forward-looking approaches in the set of thirty instances with 4, 8, and 12 periods

and ¢ € (1,2,3,4, P}.

Periods E=1 E=2 =3 E=4 =P

W/T/L G(%) W/T/L G(%) W/T/L G(%) W/T/L G(%) W/T/L G(%)
4 3/6/1 —-8.95 5/3/2 -2.27 6/2/2 -9.50 7/1/2 -9.50 - -
8 4/2/4 1.58 5/0/5 -2.27 7/0/3 —4.04 9/0/1 -15.23 10/0/0 —-20.16
12 3/0/7 2.99 6/0/4 —4.58 6/0/4 -4.19 7/0/3 -5.22 9/0/1 -9.29
Tot./Avg. 10/8/12 -1.31 16/3/11 -3.04 19/2/9 -5.91 23/1/6 -9.98 19/0/1 -14.73

Table 8

Comparison of the forward-looking approach solutions with the solutions found by CPLEX (two hours of CPU time limit) in the ten instances with four periods and ¢ € {1,2,3,4}.

& Inst. CPLEX Forward-looking approach
Ceiling of best Best objective Objects Leftovers gap (%) CPU Best objective Objects Leftovers CPU gap (%)
lower bound function value cost value time function value cost value time
1 314,108,050 314,108,050 9,155 0 0.0000 0.2 400,703,843 11,679 2,647 681.1 27.5688
2 183,065,998 187,422,365 6,715 0 2.3244 7,200.0 187,422,365 6,715 0 101.0 0.0000
3 339,152,904 339,152,904 8,916 2,820 0.0000 0.8 340,487,089 8,951 0 266.7 0.3934
4 309,586,584 309,586,584 9,677 0 0.0000 0.6 309,586,584 9,677 0 665.6 0.0000
5 182,258,424 182,258,424 6,541 0 0.0000 504.0 182,258,424 6,541 0 1,443.0 0.0000
1 6 148,039,222 148,039,222 3,914 0 0.0000 0.2 148,039,222 3,914 0 157.4 0.0000
7 580,789,654 580,790,380 12,842 1,912 0.0001 7,200.0 607,520,858 13,433 0 664.3 4.6024
8 80,065,392 143,120,844 7,236 0 44.0575 7,200.0 191,042,687 9,659 2,674 1,927.3 33.4835
9 226,123,995 226,123,995 4,757 0 0.0000 0.3 226,123,995 4,757 0 257.8 0.0000
10 288,510,000 288,510,000 8,850 0 0.0000 35.8 354,815,285 10,884 3,115 287.4 22.9820
Avg 271,911,277 7,860 4.6382 2,214.2 294,800,035 8.621 645.2 8.9030
1 277,053,250 277,053,250 8,075 0 0.0000 0.5 300,655,883 8,763 2,647 1,190.8 8.5192
2 111,057,869 125,208,746 4,486 0 11.3018 7,200.0 187,421,443 6,715 922 557.7 49.6872
3 205,638,834 205,638,834 5,406 0 0.0000 0.8 339,152,364 8,916 3,360 481.9 64.9262
4 216,807,866 277,209,196 8,665 1,484 21.7891 7,200.0 277,209,196 8,665 1,484 808.8 0.0000
5 162,302,164 235,866,350 8,465 2,410 31.1889 7,200.1 182,257,683 6,541 741 1,446.4 —22.7284
2 6 136,049,331 136,049,331 3,597 0 0.0000 0.6 179,167,551 4,737 0 270.3 31.6931
7 406,039,028 491,516,168 10,868 0 17.3905 7,200.0 634,518,412 14,030 2,368 1,633.8 29.0941
8 80,063,257 186,631,657 9,436 2,987 57.1009 7,200.0 166,697,412 8,428 0 913.2 -10.6811
9 226,118,364 226,122,466 4,757 1,529 0.0018 7,200.0 226,122,767 4,757 1,228 458.4 0.0001
10 249,388,985 249,388,985 7,650 1,015 0.0000 495.9 284,400,266 8,724 2,134 551.8 14.0388
Avg 241,068,498 7,141 13.8773 4,369.8 277,760,298 8,028 831.3 16.4549
1 177,005,290 177,005,290 5,159 0 0.0000 0.9 277,051,660 8,075 1,590 922.0 56.5226
2 111,054,694 169,836,470 6,085 1,965 34.6108 7,200.0 170,926,810 6,124 154 355.7 0.6409
3 115,486,404 205,637,468 5,406 1,366 43.8398 7,200.0 205,638,144 5,406 690 306.6 0.0000
4 127,232,184 309,582,103 9,677 4,481 58.9020 7,200.0 187,633,080 5,865 0 808.2 —39.3924
5 53,610,336 203,212,152 7,293 0 73.6185 7,200.0 182,257,479 6,541 945 2,669.0 -10.3113
3 6 92,931,111 92,931,111 2,457 0 0.0000 1.2 92,931,111 2,457 0 160.1 0.0000
7 352,310,540 352,310,540 7,790 0 0.0000 14.1 459,767,078 10,166 438 832.0 30.5006
8 36,551,592 203,245,012 10,276 3,992 82.0160 7,200.0 143,119,673 7,236 1,171 2,679.7 —29.5835
9 226,118,158 226,122,466 4,757 1,529 0.0019 7,200.0 226,122,641 4,757 1,354 347.7 0.0000
10 178,974,000 178,974,000 5,490 0 0.0000 57.0 178,974,000 5,490 0 314.8 0.0000
Avg. 211,885,661 6,439 29.2989 4,327.3 212,442,168 6,212 939.6 0.8377
1 176,988,585 177,003,343 5,159 1,947 0.0083 7,200.0 277,048,333 8,075 4,917 1,110.1 56.5215
2 111,047,720 169,836,144 6,085 2,291 34.6148 7,200.0 170,926,618 6,124 346 331.7 0.6421
3 115,475,322 205,637,138 5,406 1,696 43.8451 7,200.0 205,637,682 5,406 1,152 304.6 0.0003
4 127,219,873 314,860,429 9,842 4,835 59.5948 7,200.0 187,632,447 5,865 633 1,510.7 —40.4077
5 53,602,745 274,288,791 9,844 4,425 80.4576 7,200.0 182,257,683 6,541 741 1,513.6 —33.5526
4 6 92,926,077 92,930,701 2,457 410 0.0050 7,200.0 92,930,802 2,457 309 248.2 0.0001
7 352,270,070 459,762,829 10,166 4,687 23.3800 7,200.0 459,763,070 10,166 4,446 1,421.0 0.0001
8 36,542,003 347,683,703 17,579 11,338 89.4899 7,200.0 143,119,381 7,236 1,463 3,001.7 —58.8363
9 226,116,418 226,122,302 4,757 1,693 0.0026 7,200.0 226,122,426 4,757 1,569 394.3 0.0001
10 178,945,769 178,972,776 5,490 1,224 0.0151 7,200.0 178,972,994 5,490 1,006 514.3 0.0001
Avg. 244,709,816 7,679 33.1413 7,200.0 212,441,144 6,212 1,035.0 —7.5632

vision of the future. Moreover, as shown in Tables 2-6 and Fig. 9, the
proposed method outperforms the myopic approach in situations where
there is plenty of room for leftover utilization (like in the cases & = 4
and ¢ = P). In those situations, as detailed in Section 4.1 and reinforced
in the previous paragraph, there is room to vary the parameters of the
proposed method if the computational effort is a limiting factor.

The comparison with the solution found by an exact method like
CPLEX with a time limit also deserves a little discussion. The imposed
limit of two hours was arbitrary, related to the need to carry out a
large number of experiments. However, experiments with limits of ten
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and twenty CPU hours were also performed, and no significant im-
provement was observed in the solutions found by CPLEX for the more
relevant instances with 8 and 12 periods and ¢ € {4, P} reported in
Table 9. In fact, even with higher time limits, CPLEX was not even able
to find feasible solutions in most of the problems, as already reported.
These facts reinforce that modifying the comparison to impose the same
time limit on the forward-looking approach that was imposed on CPLEX
would also be an arbitrary choice, since this limit could be two, ten
or twenty hours for CPLEX without any change in the quality of the
solution found. (This fact is not rare and can be considered expected,
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Table 9
Comparison of the forward-looking approach solutions with the solutions found by CPLEX (two hours of CPU time limit) in the twenty instances with eight and twelve periods
and ¢ € {4, P).
& Inst. CPLEX Forward-looking approach
Ceiling of best Best objective Objects Leftovers gap (%) CPU Best objective Objects Leftovers CPU gap (%)
lower bound function value cost value time function value cost value time
11 473,195,099 1,181,466,014 12,319 0 59.9500 7,200.0 1,045,086,574 10,897 1,108 3,000.9 —11.5432
12 Solution not found 1,283,103,972 14,193 0 5,231.0 -
13 372,869,484 612,863,033 6,369 361 39.1600 7,200.0 594,580,454 6,179 0 1,498.7 —2.9831
14 222,193,109 1,779,131,599 20,874 1,169 87.5100 7,200.0 1,034,033,507 12,132 1,117 4,999.5 —41.8799
15 262,875,214 1,779,602,401 23,687 1,909 85.2300 7,200.0 901,935,429 12,005 221 4,162.6 ~49.3181
16 383,738,872 1,550,599,272 18,878 1,892 75.2500 7,200.0 1,036,005,844 12,613 750 3,397.7 -33.1867
17 Solution not found 1,083,925,806 15,156 1,002 8,488.7 -
18 451,919,637 1,202,550,436 14,801 1,212 62.4200 7,200.0 925,901,698 11,396 510 4,619.3 —23.0052
19 618,233,892 1,642,891,463 19,720 1,457 62.3700 7,200.0 1,026,389,411 12,320 2,109 6,673.1 —37.5254
20 Solution not found 1,151,100,925 14,038 1,037 4,336.0 -
4 Avg. 1,392,729,174 16,664 67.4129 7,200.0 1,008,206,362 12,093 4,640.8 —28.4917
21 997,754,130 3,307,163,912 26,046 892 69.8300 7,200.0 2,248,327,065 17,707 1,553 3,668.8 -32.0165
22 Solution not found 1,876,619,885 16,513 0 5,023.8 -
23 1,113,795,638 2,764,226,978 23,711 1,402 59.7100 7,200.0 2,000,862,162 17,163 378 6,223.4 —27.6159
24 992,737,680 3,085,338,077 26,007 2,368 67.8200 7,200.0 2,448,388,251 20,638 879 2,789.5 —20.6444
25 664,024,760 3,857,201,153 27,650 1,497 82.7800 7,200.0 2,704,226,259 19,385 626 3,955.0 —29.8915
26 930,197,235 4,649,597,500 31,700 0 79.9900 7,200.0 2,499,194,368 17,039 957 4,805.9 —46.2492
27 Solution not found 2,912,940,914 22,470 2,476 5,023.6 -
28 Solution not found 2,569,542,877 23,605 3,003 5,369.5 -
29 Solution not found 2,156,800,182 15,917 1,069 6,318.9 -
30 822,377,280 3,478,070,731 22,466 3,059 76.3600 7,200.0 2,225,775,255 14,377 0 4,611.4 —36.0055
Avg. 3,523,599,725 26,263 72.7483 7,200.0 2,364,267,722 18,481 4,779.0 -32.0705
11 Solution not found 7,200.0 986,583,007 10,287 2,015 3,695.6 -
12 Solution not found 7,200.0 1,328,123,427 14,691 1,737 3,980.1 -
13 191,251,115 4,109,235,104 42,704 0 95.3458 7,200.0 594,578,854 6,179 1,600 1,202.0 ~85.5306
14 Solution not found 7,200.0 900,474,708 10,565 1,372 6,194.6 -
15 Solution not found 7,200.0 874,512,980 11,640 220 3,263.3 -
16 Solution not found 7,200.0 909,595,796 11,074 416 6,542.8 -
17 Solution not found 7,200.0 1,068,191,648 14,936 1,200 6,391.5 -
18 303,252,735 3,831,863,430 47,163 35,994 92.0860 7,200.0 926,144,408 11,399 1,544 4,402.0 —75.8306
19 Solution not found 7,200.0 914,087,713 10,972 579 7,378.1 -
20 Solution not found 7,200.0 880,914,146 10,743 1,111 4,538.0 -
P Avg. 3,970,549,267 44,934 93.7159 7,200.0 938,320,669 11,249 4,758.8 —80.6806
21 Solution not found 7,200.0 1,870,326,188 14,730 832 5,020.4 -
22 Solution not found 7,200.0 1,765,473,725 15,535 1,350 9,743.6 -
23 Solution not found 7,200.0 1,787,753,330 15,335 970 5,817.6 -
24 Solution not found 7,200.0 1,964,238,743 16,557 952 4,650.0 -
25 Solution not found 7,200.0 2,428,432,517 17,408 891 8,681.4 -
26 Solution not found 7,200.0 2,381,267,430 16,235 1,195 6,079.0 -
27 Solution not found 7,200.0 2,410,469,370 18,594 1,008 4,717.7 -
28 Solution not found 7,200.0 2,066,194,766 18,981 970 8,722.4 -
29 Solution not found 7,200.0 1,955,577,574 14,432 1,722 8,361.4 -
30 Solution not found 7,200.0 2,183,355,005 14,103 940 4,166.0 -
Avg. - - - 7,200.0 2,081,308,865 16,191 6,596.0 -

since as the bottom-right of Table 1 shows we are dealing with instances
with a huge number of real and binary variables and constraints.)

In the present work, the implementation of the myopic method, the
implementation of the proposed method, and the solution of the inte-
grated multi-period problem lie in the use of CPLEX. By default, CPLEX
uses a deterministic type of parallelism, which impacts all presented
experiments in a similar way. For this reason, the use of parallelism
for the resolution of the models, whether for a single period or for
the multiperiod problem as a whole, was not highlighted. Naturally,
any improvement in the parallelization of integer programming models
would positively impact all tested methods. In particular, in practice,
the considered (most updated) version of CPLEX has an opportunistic
mode of parallelization that promises better results at the price of
losing the determinism of the results. Apart from the possibility of
parallelizing the resolution of the single period models, the rolling
horizon methods such as the myopic method and the forward-looking
proposed method are sequential in nature, since each period uses the
solution of the previous period as input data.

The present work demonstrated that a forward-looking method has
the potential to address large instances of the considered problem and
find better quality solutions than a myopic method. The drawback of
the proposed method, which makes it expensive and prevents it from
addressing even larger instances, is the use of an exact method to
solve the subproblems of a single period. For this reason, the next
development should be to develop a heuristic method for the single-
period cutting problem with usable leftovers introduced in Andrade
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et al. (2014). The instances and their solutions presented in the present
work will serve as a set of tests for that and other future developments.

5. Concluding remarks

This work contributes to the literature on two-dimensional cutting
stock problems with usable leftovers, which is very limited. A forward-
looking approach for the multi-period two-dimensional non-guillotine
cutting stock problem with usable leftovers, proposed in Birgin et al.
(2020), was introduced, this being the first method reported in the
literature to address this problem. The method solves a sequence of
single-period subproblems and differs with a myopic approach in the
objective function being minimized. On the one hand, the myopic
approach greedily minimizes the cost of the raw material that must be
purchased to produce the orders of the period. On the other hand, the
forward-looking approach takes into consideration the future impact
of the decisions of the period. This looking-head feature allows the
method to suggest the purchase of some extra raw material whose
leftovers are expected to be used in future periods, resulting in a lower
overall cost. Numerical experiments shown the efficiency and effec-
tiveness of the method. In summary, the proposed approach greatly
improves the solution found with a commercial solver or with a myopic
approach in problems with a reasonable number of periods in which
usable leftovers can be used over several periods after they have been
generated, i.e. a scenario in which leftovers can play a relevant role.

On the one hand, the proposed method can be applied to in-
stances with a large number of periods. On the other hand, solving the
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Table A.10
Summary of notations used throughout the article to define the considered problem
and the introduced forward-looking approach.

Problem data

p initial instant of the considered horizon (zero when omitted)
P final instant of the considered horizon
¢  leftovers’ expiration date
m, number of purchasable objects available at instant s
O,; name of the jth purchasable object at instant s
W,; width of object O;;
H,; height of object O,;
c,; cost per unit of area of object O;;
n, number of items that must be produced along the period [s,s + 1)
I, name of the ith item that must be produced along the period [s,s + 1)
w,; width of item T
hy; height of item I
d number of items in the catalogue
I, name of the ith item in the catalogue
w; width of ith item in the catalogue
h; height of ith item in the catalogue
Parameters of the forward-looking approach
5, initial utilization rate of the leftovers

ini
o constant used to update the leftovers utilization rates
¢  stopping criterion tolerance

single-period subproblems exactly, even using parallelism, limits the
applicability to instances with large single-period subproblems. Then,
devising a heuristic method for the single-period problem would have
an immediate impact on methods for solving the multi-period problem.
That will be a subject of future work. In another line of research, the
problem introduced in Birgin et al. (2020) and for which a method was
developed in the present work, could be modified to take into account
situations that sometimes arise in practice. For example, the problem
could be modified to allow the anticipated production of items included
in future period orders. In this case, storage costs and production
capacity limits for each period could be considered. In addition, in the
case of isotropic materials, ninety-degree rotations of the items could
also be contemplated, as for example considered in Ayadia et al. (2017).
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Appendix

Table A.10 summarizes the notations used throughout the article
to define the considered problem and the introduced forward-looking
approach. Table A.11 describes in detail the twenty five instances
with four periods introduced in Birgin et al. (2020) and considered
in the parameters tuning Section 4.1 of the present work. In addition,
Table A.12 shows the number of binary variables, continuous variables,
and constraints of each instance of Table A.11 when ¢ € {1,2,3,4]}.
Table A.13 describes in detail the thirty instances with four, eight,
and twelve periods introduced in the present work. Instances were
generated with the random instances generator introduced in Birgin
et al. (2020) and available at https://github.com/oberlan/bromro2.
The number of binary variables, continuous variables, and constraints
of each instance of Table A.13, for ¢ € {1,2,3,4, P} was given in
Table 1. In Tables A.11 and A.13, notation a(b X c)[s] means that there
are a objects or items with width » and height ¢; and, in the case
of objects, that the cost per unit of area is s. When « is omitted, it
means that there is a single copy of the described object or item; and,
when s is omitted, it means that the cost per unit of area is 1. Column
d represents the number of items in the catalogue, that are the ones
whose dimensions are underlined in the tables.

Description of the twenty five instances with four periods taken from Birgin et al. (2020) and considered in the parameter tuning

Section 4.1 of the present work.

Inst. P s Objects O,; Items 1
my Wy x Hy g d Wy X h
0 3 21 x 17,19 x 19,24 x 13 2 10 x 11,9 x 11
1 3 1 1 10 x 16 3 1 7 X 6,7 X 5,7 X 4
2 1 10 x 12 2 2(6 x 3)
0 2 14 x 8,16 x 6 3 3x7,6x84x8
9 4 1 1 15 x 10 3 9 5x3,2(2x5)
2 1 20 x 15 2 5x3,3x2
3 1 15 x 10 2 2(2 x3)
0 2 15 x 6,15 x5 3 2(1 x 6), 10 x 6
1 1 12x7 1 3x5
3 4 2 1 20 x 10 2 2 5x%x3,3x%x2
3 1 20 x 8 6 22%x3),10x1,2x2, 205 x 2)
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Table A.11 (continued).

Inst. P s Objects o, Items T
my W, X H; ng d wg X hy
0 2 13 x8,12x 6 5 1x52x51x41x33x2
4 4 1 3 10 x 8,12 x 10,15 x 10 3 9 3x72x%x32x4
2 1 8 x4 2 10x1,1x3
3 0 3 3x1,3x3,4x4
0 2 10 x 4,13 x 8 4 2(1 x5),2x53x5
5 4 1 2 10 x 9,12 x 9 2 1 5%x36x3
2 3 10 x 10, 2(12 x 9) 3 5% 3,6x23x3
3 0 3 1x2 5x44x2
0 2 22 x 17,14 x 30 5 3(2 x 11), 2(5 x 5)
6 4 1 2 17 x 29,24 x 10 2 4 2(4 x 10)
2 2 18 x 19,26 x 22 3 36 x4)
3 3 24 x 12,15 x 18,17 x 13 8 43x%x3),4x2,2(7x1D,11x1
0 2 (10 x 12) 2,12 x 10 3 5x48x%x2 2x2
1 1 17 x 15 1 3x7
7 4 2 1 17 x 15 1 ! 8 x 4
3 1 17 x 15 1 4x9
0 2 10 x 12, (12 x 10) 2 3 5x48x%x2 2x2
1 1 17 x 15 1 3x7
8 4 2 1 17 x 15 1 ! 8 x 4
3 1 17 x 15 1 4x9
0 3 30 x 20, 2(10 x 10) 3 6 3x78x%x210x15%x42x%x9,2x2
9 4 1 3 (30 x 20) 3, 2(10 x 10) 3 6 9 5%x39x36x13x84x%x1,7x%x3
2 0 4 3%x27%x24x%x54x1
3 0 4 8x44x%x23x%x7,6x2
0 2 14 x 21,19 x 19 7 2(11 x 3), 3(2 x 11), 2(5 x 5)
10 4 1 1 27 x 23 9 1 9% 7,49 x6),2(5 x3),25x4)
2 1 20 x 15 9 5(3x2),43 x1)
3 1 17 x 17 7 483 x4,32x1)
0 2 30 x 10,23 x 16 1 6 X6
1 4 1 1 28 x 12 3 9 2x5,2(4x1)
2 2 22 x 11,26 x 23 3 2(9%x3),6x6
3 1 17 x 29 3 2(4x3),7x%x2
0 2 37 x 20,22 x 24 2 2(11 x 6)
1 1 21 x 23 1 6 X6
12 4 2 1 36 x 30 2 ! 2(13 x 5)
3 2 13 x 18,10 x 17 2 4x5,4x2
0 2 25 x 34,36 x 14 2 2(6 x 6)
1 2 23 x 18,33 x 33 1 6 x3
13 4 2 1 17 x 26 1 2 1x6
3 2 38 x 23,30 x 36 1 4 x 10
0 1 40 x 33 4 2(3 x 12), 2(15 x 10)
14 4 1 1 26 x 36 4 1 23 x4, 2(10 x 9)
2 1 13 x 19 4 2(5x%x 3),2(2x3)
3 1 32 x 19 2 2(8 x 6)
0 2 10 x 24,26 x 38 2 2(11 x 13)
15 4 1 1 25 x 23 2 9 2(6 X 2)
2 1 36 x 36 4 23 x4, 2(6 x 13)
3 1 39 x 25 4 22 x4, 2(14 x 3)
0 3 20 x 38, 2(11 x 17) 4 2(2 x 4), 2(6 x 16)
1 1 33 x21 2 2(8 x9)
16 4 2 1 12 x 22 2 3 2(4 x 2)
3 1 30 x 14 2 25 x 1)
0 1 15 x 39 3 2(6 Xx2),5x%x9
17 4 1 1 19 x 13 4 5 2(7 x 2), 2(5 x 6)
2 1 20 x 40 2 23 x4
3 2 38 x 40,22 x 26 3 2(4 x 13),4x 8
0 1 22 x 38 1 2x11
18 4 1 3 2(22 x 12), 33 x 17 4 1 2(14 x 5), 2(12 x 7)
2 2 12 x 13,23 x 11 2 2(7 x 5)
3 2 10 x 23,14 x 20 3 2(1 x 2),4 x 10

(continued on next page)
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Table A.11 (continued).
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Inst. P s Objects O; Items T
my W, x H; ng wy X hy
0 2 14 x 14,39 x 11 2 11 x 6,8 x5
19 4 1 1 15 x 23 3 2(6 x 10), 2 x 10
2 1 39 x 14 3 2(5x5),7x2
3 1 36 x 11 2 3x1,3x2
0 1 27 x 24 3 4 x6,2(10 x 2)
20 4 1 2 35 x 27,27 x 11 1 14 x5
2 2 23 x 30,17 x 13 3 2(6 x8),5x%x5
3 1 24 x 34 2 2(3x7)
0 3 10 x 17,26 x 15,12 x 11 1 2x1
21 4 1 1 23 x 20 1 10 x 3
2 3 11 x 16,22 x 15,28 x 30 1 3x10
3 1 30 x 28 2 2(8 x 2)
0 2 16 x 24,20 x 10 4 5x%x98x6,2(2x4)
2 4 1 1 11 x 13 1 2x5
2 3 22 x 17,13 x 11,29 x 29 1 3x7
3 2 30 x 23,18 x 23 2 2(4 x 8)
0 3 16 x 12,12 x 10,19 x 25 6 2(4 x 5), 2(1 x 10), 2(4 x 3)
23 4 1 3 18 x 20,25 x 13,21 x 16 2 2(2 x 5)
2 2 12 x 24,14 x 16 5 2(2x2),5x%x9,2(6 x2)
3 1 14 x 27 4 3x6,2(4x6),1x4
0 1 21 x 21 5 4x2,2(3%x9),2(8x3)
24 4 1 2 19 x 30,23 x 12 3 2x6,8x55x4
2 2 21 x 28,24 x 11 1 10 x 2
3 1 29 x 16 2 2(3 x 5)
0 3 22 x 28,30 x 25,19 x 22 2 2(6 x 5)
- 4 1 2 22 x 22,12 x 22 4 ) 2(4 x 8), 2(2 x 3)
2 1 22 x 11 4 3x3,3x1,28x1)
3 2 23 x 19,12 x 23 4 4x%x94x%x8,2(7x9)
Table A.12

Number of binary variables (BV), continuous variables (CV), and constraints (CO) of the twenty five instances with four periods taken from
Birgin et al. (2020) and considered in the parameter tuning Section 4.1 of the present work.

Inst. éE=1 E=2 E=3 E=4
BV CcvV CcO BV (9% Cco BV (9% CO BV (9% CO

1 81 82 410 153 162 802 297 354 1,498 297 354 1,498
2 89 88 423 165 168 823 285 296 1,439 509 552 2,431
3 115 92 547 211 172 1,227 403 300 2,947 659 556 4,003
4 121 98 588 237 206 1,292 461 438 2,508 653 662 3,404
5 127 108 651 267 256 1,507 427 432 2,467 587 656 3,299
6 276 168 1,704 468 296 3,448 772 488 6,392 1,060 744 7,512
7 61 80 275 121 160 583 217 288 1,071 409 544 1,999
8 61 80 275 121 160 583 217 288 1,071 409 544 1,999
9 204 112 1,392 360 208 2,568 672 496 4,488 1,008 880 5,976
10 373 132 2,171 521 212 4,231 713 340 6,351 905 596 7,279
11 108 100 546 224 212 1,202 360 340 1,994 584 596 2,986
12 85 106 382 161 190 786 281 326 1,410 505 614 2,434
13 87 114 374 167 214 766 343 422 1,566 599 710 2,654
14 106 86 482 174 154 898 262 258 1,338 374 402 1,850
15 108 94 514 212 178 1,238 372 314 2,294 628 602 3,382
16 106 102 494 206 202 1,006 374 370 1,846 806 802 3,574
17 113 104 513 181 172 877 285 276 1,421 413 420 1,965
18 143 136 735 275 272 1,491 483 520 2,531 595 664 3,043
19 92 90 440 180 174 940 308 310 1,580 564 598 2,668
20 101 100 466 233 220 1,090 425 396 1,882 585 540 2,490
21 87 114 402 211 274 1,034 355 434 1,818 643 818 3,210
22 112 128 510 224 272 1,078 336 400 1,678 528 656 2,606
23 224 150 1,301 436 310 2,953 748 598 4,873 1,084 982 6,361
24 109 102 460 217 214 972 377 374 1,684 505 502 2,212
25 180 140 996 328 252 2,100 584 476 3,772 920 860 5,260
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Table A.13
Description of the considered thirty instances with four, eight, and twelve periods.
Inst. P K Objects O; Items T,
my W; X H; ng d wy X hy
0 2 77 x 100,67 x 77 4 2(6 x 5), 2(9 x 6)
1 4 1 2 81 x 36,95 x 33 6 5 8 x 11, 2(15 x 6), 3(18 x 14)
2 2 54 x 74,78 x 100 10 3(6 x 8), 3(7 x 9), 2(17 x 13), 2(13 x 8)
3 1 53 x 68 7 3(10 x 5), 5 x 6, 18 x 15, 2(16 x 14)
0 3 49 x 82,34 x 70,57 x 76 6 2(7 x 5), 19 x 15, 3(17 x 15)
9 4 1 2 39 x 54,39 x 41 4 9 17 x 20, 2(9 x 20), 20 x 17
2 2 38 x 72,85 x 96 7 10 x 10, 3(14 x 8), 18 x 20, 2(6 x 18)
3 1 43 x 60 4 14 x 8, 3(18 x 7)
0 1 69 x 44 4 15 x 6,14 x 8, 2(8 x 11)
3 4 1 2 30 x 79,39 x 92 6 1 3(8 x 17), 3(18 x 17)
2 2 83 x 89,65 x 91 8 13 x 11, 3(8 X 5), 2(9 x 14), 2(18 x 17)
3 3 96 x 73,54 x 65,95 x 55 4 14 x 14, 2(10 x 15), 12 x 13
0 2 41 x 97,85 x 69 4 14 x 12, 2(18 x 8), 19 x 15
4 4 1 1 90 x 95 13 3 3(14 x 10), 3(8 x 10), 2(19 x 12), 3(17 X 6), 2(17 x 9)
2 1 75 X 76 6 18 x 12, 5 x 20, 2(15 x 20), 2(9 x 11)
3 2 80 x 35,85 x 60 5 19 x 13, 3(16 x 14), 12 x 18
0 3 91 x 59,52 x 37,40 x 66 4 2(6 x 5), 2(19 x 14)
5 4 1 1 88 x 90 13 1 2(20 x 9), 3(7 x 7), 2(7 x 15), 3(19 x 8), 3(11 x 16)
2 1 83 x 47 10 3(20 x 8), 2(20 x 9), 3(14 x 18), 2(17 x 17)
3 1 65 x 94 6 3(7 x 8), 3(17 x 9)
0 1 63 x 39 3 2(5x8),12x7
6 4 1 4 81 x 87, 2(38 x 30), 81 x 54 5 9 2(14 x 18), 3(7 x 19)
2 3 83 x 91,47 x 31,52 x 71 3 16 x 6,16 x 9,7 x 11
3 3 53 X 56,44 x 53,37 x 99 6 3(11 x 5), 14 x 19, 2(6 x 12)
0 1 82 x 95 7 12 x 17,10 x 5,9 x 17, 3(6 x 18), 12 x 20
7 4 1 3 57 x 54, 2(33 x 36) 8 9 3(20 x 17), 2(11 x 8), 2(15 x 14), 18 x 5
2 2 95 x 67,99 x 57 9 2(10 x 17), 5 x 8, 3(6 x 6), 3(14 x 9)
3 3 42 x 92,88 x 100,85 x 86 11 15 x 15, 2(16 x 10), 2(6 x 5), 3(16 x 12), 3(12 x 17)
0 2 2(56 x 33) 10 3(13 x 17), 2(17 x 7), 17 x 10,7 x 13, 3(15 x 10)
8 4 1 1 70 x 94 8 1 12 x8,2(9%x7),18x5,3(14x%x13),6x9
2 2 55 x 40,60 x 59 4 3(16 x 9), 11 x 14
3 1 71 x 53 13 3(16 x 19), 2(5 x 5), 2(18 x 6), 3(11 x 14), 3(12 x 18)
0 3 66 x 99,93 x 54,30 x 74 4 3(5 x 16), 11 x 16
9 4 1 1 56 x 93 8 5 3(14 x 12), 14 x 10, 3(10 x 7), 19 x 10
2 3 67 X 68,43 x 59,93 x 74 6 2(18 x 10), 13 x 17, 3(19 x 7)
3 3 93 x 92,86 x 53,43 x 34 2 14 x 20,12 x 9
0 2 78 x 95,61 x 90 7 2(9 x 19), 2(12 x 6), 3(6 x 12)
10 4 1 1 62 x 79 7 3 3(20 x 15), 3(15 x 7), 16 x 18
2 2 36 x 60,35 x 96 6 2(16 x 16), 7 x 17, 3(9 x 8)
3 2 84 x 72,33 x 98 7 2(11 x 5), 3(7 x 17), 20 x 16,19 x 12
0 3 61 x 85,37 x 95,84 x 46 4 16 x 20, 3(5 x 6)
1 3 72 x 55,62 x 41,35 x 33 6 3(8 x5),8x17,2(14 x5)
2 3 90 x 68,47 x 44,52 x 63 3 2(14 x 16), 14 x 17
11 s 3 4 2(39 x 56), 81 x 81,61 x 44 10 9 2(19 x 19), 3(7 x 15), 2(16 x 15), 3(18 x 9)
4 2 54 x 97,40 x 86 7 3(17 x 7), 13 x 6, 3(10 x 6)
5 4 2(33 x 43), 93 x 77,84 x 70 9 3(16 x 16), 3(10 x 11), 3(14 x 11)
6 3 41 x 74,86 x 91,62 x 30 8 3(19 x 8), 3(8 x 9), 2(7 x 6)
7 3 100 x 37,69 x 65,83 x 62 7 2(13 x 18),7 x 8,13 x 12, 2(12 x 7), 14 x 18
0 3 68 x 37,70 x 43,97 x 52 7 20 x 14,14 x 10,20 x 15, 3(17 x 19), 7 x 13
1 3 88 x 39,89 x 35,55 x 79 8 3(7 x 17), 3(15 x 11), 10 x 12,20 x 10
2 2 66 x 77,58 x 88 11 18 x 9, 3(10 x 20), 2(18 x 5), 2(7 x 12), 3(14 x 15)
12 8 3 2 95 X 69,85 x 97 8 3 2(20 x 14), 14 x 18, 3(8 x 17), 2(14 x 15)
4 2 30 x 84,65 x 56 6 3(5 x 20), 2(12 x 13), 14 x 9
5 3 75 x 63,42 x 55,73 x 89 5 5x9,2(17 x 15), 2(11 x 9)
6 3 90 x 57,67 x 52,76 x 86 10 3(20 x 15), 13 x 19, 3(16 x 5), 3(19 x 5)
7 2 46 x 91,88 x 56 10 2(10 x 18), 14 x 9, 3(11 x 17), 3(17 x 9), 9 x 8
0 2 58 x 43,39 x 51 5 10 x 18,3(9x 9), 12 x 8
1 3 94 x 47,97 x 39,85 x 70 6 8 x 8, 3(17 x 6), 2(15 X 6)
2 2 84 x 72,85 x 77 6 13 x 18, 3(17 x 6), 2(5 x 13)
13 3 3 3 83 x 81,55 x 67,81 x 86 7 4 12 x 12, 3(13 X 5), 15 x 11, 2(5 x 9)
4 3 51 x 61,97 x 53,41 x 46 2 18 x 14,6 x 8
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Table A.13 (continued).

Inst. P K Objects O; Items T
my W,; X Hy; ng d wy X hy
5 2 62 x 45,60 x 75 3 2(6 x 19), 6 x 16
6 3 44 x 91,70 x 99,30 x 51 3 10 x 9, 2(11 x 7)
7 3 96 x 85,41 x 59,98 x 73 5 3(18 x 9), 2(20 x 8)
0 3 33 x 32,57 x 91,62 x 84 4 3(12 x 13), 10 x 10
1 2 91 x 83,81 x 68 4 2(16 x 18), 16 x 7,15 x 8
2 2 70 x 35,39 x 72 7 8 x 19, 2(10 x 10), 3(6 x 16), 10 x 6
14 3 3 2 78 x 92,51 x 93 5 1 20 x 14, 3(15 x 8), 16 x 17
4 3 50 x 70,71 x 81,33 x 47 10 2(18 x 5), 13 x 15, 2(15 x 5), 3(17 x 5), 2(15 x 17)
5 3 57 x 50,34 x 86,94 x 45 8 3(19 x 16), 3(18 x 12), 14 x 14,14 x 17
6 3 68 x 94,50 x 68,48 x 53 11 3(5 x 5), 3(8 x 16), 3(14 x 12), 16 x 20,11 x 6
7 2 61 x 64,73 x 89 6 3(7 x 6), 2(12 x 15), 16 x 5
0 2 85 x 40,55 x 36 5 3(17 x 13), 2(8 x 11)
1 3 59 x 53,92 x 88,51 x 58 10 2(18 x 12), 3(7 x 18), 3(11 x 17), 13 x 10, 8 x 11
2 3 98 x 82, 2(44 x 49) 6 16 x 6, 3(18 x 17), 19 x 19,19 x 16
15 s 3 2 51 x 89,32 x 70 4 4 3(10 x 17), 13 x 20
4 4 35 x 51,38 x 80, 2(31 x 49) 7 3(18 x 14), 2(15 x 8), 2(13 x 5)
5 3 67 x 77,37 x 55,39 x 78 8 2(17 x 6), 3(10 x 6), 3(16 x 17)
6 2 88 x 70,54 x 83 11 8 x 20, 2(11 x 11), 3(11 x 16), 2(15 x 10), 3(20 x 17)
7 2 57 x 83,45 x 66 6 14 x 14, 3(16 x 10), 14 x 20,10 x 7
0 5 31 x 98, 2(51 x 39), 2(30 x 64) 5 2(20 x 20), 2(20 x 17), 18 x 14
1 2 86 x 87,82 x 98 4 3(7x9),13x5
2 3 68 x 97,65 x 65,78 x 34 10 2(17 x 13), 3(16 x 12), 12 x 11,6 x 17, 3(7 X 5)
16 8 3 2 54 x 85,53 x 59 4 9 12 x 6, 3(7 x 11)
4 2 43 x 64,35 x 85 9 3(14 x 9), 3(16 x 17), 3(15 x 18)
5 3 82 % 99,38 x 98,52 x 53 13 3(7_x 5), 3(9 x 10), 3(15 x 7), 13 x 10, 3(6 x 6)
6 4 66 x 47, 3(35 x 41) 6 20 x 7, 2(19 x 12), 3(20 x 18)
7 2 73 x 50,38 x 84 3 14 x 19, 2(17 x 11)
0 2 81 x 37,33 x 64 6 2(9 x 15), 19 x 18, 3(11 x 14)
1 3 34 x 83,59 x 86,72 x 44 5 20 x 15,14 x 10, 3(18 x 14)
2 2 55 x 91,32 x 43 8 17 x 7, 2(14 x 20), 2(8 x 7), 3(8 x 18)
17 3 3 2 41 x 96,41 x 86 7 9 29 x9), 18 x 7,15 x 16,17 x 18, 2(8 x 15)
4 2 80 x 86,74 x 59 11 3(14 x 14), 3(6 x 20), 3(19 x 8), 2(11 x 12)
5 4 85 x 39,85 x 63, 2(51 x 35) 10 2(20 x 16), 3(14 x 10), 2(18 x 20), 3(8 x 17)
6 2 78 x 53,62 x 93 9 3(20 x 16), 2(11 x 5), 2(15 x 12), 14 x 14,9 x 14
7 2 56 X 66,52 x 85 15 3(6 x 8), 3(8 x 5), 3(11 x 17), 3(12 x 16), 3(20 x 6)
0 2 45 x 83,97 x 52 7 15 x 15, 3(11 x 13), 3(18 x 13)
1 2 89 x 87,88 x 45 8 2(18 x9), 6 x 7, 2(12 x 8), 8 x 19, 2(18 X 6)
2 3 2(65 x 33), 92 x 72 8 3(19 x 20), 2(15 x 14), 3(9 x 14)
18 8 3 3 76 x 40,54 x 71,43 x 78 9 2 3(7 x 8), 5 x 17, 3(6 x 11), 2(17 x 15)
4 2 72 x 74,89 x 73 5 3(11 x 7), 2(20 x 16)
5 4 59 x 38, 2(44 x 32), 46 x 47 7 6 x 17, 2(18 x 16), 2(8 x 15), 2(18 x 11)
6 3 56 x 41,100 x 45,40 x 92 2 13 x 20,18 x 13
7 2 73 x 77,83 x 54 6 2(5 x 7), 2(16 x 18), 2(10 x 9)
0 2 78 x 86,72 x 67 10 3(15 x 5), 3(6 x 6), 18 x 10, 2(8 x 10), 14 x 19
1 3 53 x 67,37 x 80,67 x 56 8 2(17 x 5), 2(20 x 15), 2(15 x 13), 2(15 x 9)
2 3 57 x 85,52 x 50,75 x 37 6 2(17 x 9), 29 x 9), 2(12 x 14)
19 3 3 3 64 x 44,45 x 96,75 x 52 10 2 3(18 x 20), 2(13 x 9), 8 X 9,9 x 7, 3(14 x 14)
4 2 56 x 93,53 x 49 9 3(16 x 10), 3(10 x 14), 12 x 17, 2(6 x 15)
5 2 51 x 89,65 x 72 5 16 x 14,18 x 8, 3(16 x 5)
6 2 92 x 64,81 x 95 6 3(19 x 7), 2(6 x 14), 17 x 16
7 3 62 x 52,32 x 97,95 x 35 8 3(7 x 16), 2(10 x 14), 11 x 12, 2(13 x 8)
0 3 75 % 82,69 x 79,76 x 64 5 2(14 x 10), 2(15 x 13), 14 x 12
1 2 49 x 68,61 x 79 12 3(11 x 18), 2(6 x 12), 2(7 x 7), 3(5 x 12), 2(13 x 18)
2 3 92 x 41,74 x 51,78 x 93 7 10 x 5, 2(13 x 6), 2(8 x 10), 2(5 x 13)
20 s 3 3 61 x 85,45 x 51,34 x 50 7 3 3(8 x 19), 14 x 10, 3(9 x 11)
4 2 41 x 50,63 x 84 6 2(13 x 20), 2(18 x 12), 2(10 x 5)
5 2 81 x 43,53 x 45 6 2(7 x 14),13 x 7, 2(9 x 11), 19 x 17
6 3 35 x 82, 2(33 x 34) 7 6 x 14, 2(17 x 19), 19 x 10, 2(15 x 9), 11 x 11
7 3 92 x 52,83 x 65,70 x 70 13 3(13 x 18), 2(16 x 6), 3(12 x 8), 3(5 x 18), 2(19 x 11)
0 2 65 x 50,93 x 92 5 2(7 x 8), 3(12 x 10)
1 2 90 x 68,57 x 69 7 2(13x6),3(19x14),6 x 11,6 x 5
2 3 78 x 71,56 x 70,62 x 100 6 19 x 15, 2(8 x 17), 3(15 x 19)
3 2 50 x 84,30 x 49 7 2(7 x7),14 x 17, 3(14 x 13), 8 x 16
(continued on next page)
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Inst. P K Objects O; Items T,
my W, X Hy; ng d wy X hy
4 2 73 x 99,44 x 72 4 7 x13,3(8 x7)
5 3 48 x 50,70 x 79,100 x 52 10 17 x 16, 2(13 x 17), 2(5 x 10), 2(16 x 12), 3(6 x 15)
6 3 36 x 93,36 x 77,92 x 90 4 2(13 x 15), 2(9 x 18)
7 3 74 x 65,47 x 70,100 x 34 4 3(15x18),11 x 9
8 2 50 x 81,70 x 87 5 16 x 10, 2(16 x 17), 2(10 x 13)
9 2 52 x 86,46 x 48 9 11 x 14, 2(19 x 8), 7 x 14, 2(15 x 6), 3(15 x 19)
10 2 93 x 47,31 x 89 5 13 x 16,15 x 18, 3(18 x 7)
11 2 81 x 92,37 x 80 11 3(9 x 14), 2(16 x 8), 2(5 x 19), 15 x 7, 3(14 x 17)
0 2 73 x 35,72 x 91 5 6 x5,7 %816 x 12, 2(11 x 8)
1 2 39 x 63,54 x 63 8 2(13 x 13), 3(7 x 19), 3(11 x 7)
2 3 96 X 44,63 x 56,54 x 53 5 8 x 20,15 x 11,18 x 8, 2(14 x 9)
3 2 45 x 82,69 x 37 12 3(17 x 17), 3(19 x 11), 13 x 11, 3(9 x 11), 2(7 x 14)
4 3 72 % 62,63 x 36,37 x 97 5 18 x 13,19 x 15, 2(18 x 19), 15 x 14
2 12 5 2 39 x 37,84 x 42 6 9 3(17 x 6), 3(10 x 5)
6 3 2(31 x 38), 98 x 38 13 2(8 x 18), 3(8 x 16), 3(6 x 13), 2(16 x 7), 3(8 x 7)
7 3 99 X 67,94 x 93,65 x 87 12 3(14 x 6), 20 x 19, 2(20 x 14), 3(17 x 17), 3(12 x 14)
8 2 78 X 66,42 x 95 6 3(9 x 5), 18 x 13, 2(6 x 5)
9 2 78 x 50,84 x 44 6 3(13 x 13), 12 x 9, 2(15 x 16)
10 3 76 x 51,70 x 88,76 x 57 6 3(15 x 12), 3(7 x 12)
11 3 71 x 40,44 x 52,55 x 58 6 5% 18, 3(12 x 6), 2(6 x 17)
0 3 100 x 62,68 x 83,86 x 66 4 3(5 x 11), 20 x 15
1 2 82 x 51,65 x 68 8 2(8 x 19), 2(20 x 18), 19 x 11,14 x 7, 2(19 x 5)
2 2 66 x 60,60 x 63 4 12 x 5,3(17 x 14)
3 3 81 x 52,32 x 97,97 x 46 7 2(20 x 10), 3(11 x 10), 2(13 x 18)
4 2 34 x 57,39 x 95 6 2(13 x 18), 2(13 x 15), 6 x 12,20 x 17
23 12 5 2 38 x 92,33 x 95 6 9 219 x 9), 11 x 17, 2(17 x 9), 17 x 17
6 3 77 x 44,37 x 100,50 x 37 9 3(9 x 16), 3(5 x 20), 3(19 x 9)
7 3 86 X 62,92 x 99,72 x 43 5 2(19 x 5), 3(15 x 17)
8 2 58 x 34,57 x 88 7 10 x 17,6 x 15, 2(5 x 12), 3(10 x 10)
9 3 2(51 x 45), 50 x 53 9 3(19 x 6), 9 x 16, 5 x 8, 3(20 x 20), 15 x 10
10 3 98 x 92,84 x 46,35 x 45 6 11 x 20, 2(12 x 15), 3(15 x 6)
11 2 37 x 35,41 x 54 2 14 x 6,14 x 9
0 3 69 X 73,63 x 95,62 x 94 8 19 x 20, 3(13 x 12), 14 x 7, 3(14 x 19)
1 2 69 x 32,39 x 59 8 8 x 9, 2(10 x 8), 3(18 x 14), 2(10 x 19)
2 3 97 x 33,78 x 42,56 x 30 7 17 x 14, 3(15 x 10), 3(20 x 12)
3 3 87 x 55,36 x 76,33 x 56 4 3(10 x 6), 15 x 20
4 3 100 x 84, 2(36 x 41) 10 15 x 18, 3(8 x 8), 2(13 x 16), 20 x 15, 3(15 x 17)
24 12 5 3 85 x 67,92 x 35,46 x 98 5 9 8 x 19,19 x 6, 3(19 x 19)
6 2 52 x 75,56 x 60 10 3(14 x 18), 3(8 x 6), 5 x 15, 3(9 x 17)
7 3 35 X 53,67 x 54,62 x 93 4 11 x7,309%x7)
8 2 97 X 66,69 x 39 4 7 x 18,8 x 8, 2(19 x 17)
9 2 83 x 38,54 x 66 7 2(18 x 7), 3(20 x 13), 2(19 x 17)
10 2 87 x 51,33 x 55 4 2(9 x 20), 2(15 x 7)
11 3 68 x 68,39 x 87,82 x 78 6 19 x 14, 2(5 x 18), 3(13 x 8)
0 3 86 x 45,57 x 40,64 x 87 9 15 x 11, 3(14 x 20), 3(9 x 16), 2(15 x 7)
1 2 70 x 31,95 x 99 8 7 x 6, 2(12 x 20), 19 x 8, 3(15 x 8), 7 x 18
2 3 49 x 36,83 x 98,35 x 51 4 2(10 x 16), 2(20 x 12)
3 4 61 x 63,97 x 89, 2(34 x 40) 12 20 x 15, 3(14 x 18), 3(16 x 15), 3(9 x 6), 2(8 x 16)
4 3 33 x 65,68 x 56,90 x 82 10 3(12 x 11), 3(20 x 13), 12 x 20, 3(6 x 13)
25 12 5 2 83 x 83,79 x 81 5 1 3(15 x 19), 11 x 14,11 x 15
6 2 51 x 77,33 x 95 6 2(5 x 5), 2(7 x 12), 2(8 x 14)
7 2 32 x 35,99 x 81 6 2(17 x 17), 3(14 x 7), 7 x 13
8 3 47 x 58,72 x 81,83 x 51 2 14 x 6,5 x 17
9 3 42 x 99,75 x 47,57 x 87 10 2(6 x 20), 2(15 x 6), 3(17 x 14), 19 x 14, 2(19 x 12)
10 2 66 x 59,54 x 86 4 5 x 18, 3(5 x 20)
11 3 55 x 58,99 x 45,67 x 73 6 2(11 x 15), 3(20 x 13), 13 x 19
0 2 51 x 42,79 x 85 5 6 x 13,8 x 15, 2(16 x 7), 15 x 15
1 3 95 x 82,100 x 90,54 x 75 3 2(18 x 5), 7 x 17
2 2 85 x 35,69 x 83 4 7 x 19, 3(17 x 13)
3 2 90 x 100,81 x 96 11 2(13 x 12), 2(12 x 19), 2(20 x 17), 2(16 x 19), 3(14 x 6)
4 3 79 x 91,51 x 40,85 x 79 8 13 x 15,19 x 7, 2(14 x 15), 2(6 x 19), 2(20 x 7)
2% 12 5 3 78 x 59,85 x 31,85 x 56 10 5 2(17 x 11), 3(10 x 9), 5 x 19, 3(15 x 11), 18 x 12
6 2 81 x 76,66 x 70 5 2(12 x 6), 2(19 x 16), 11 x 20

24
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Inst. P s Objects O; Items T
mg W,; X Hy; ng d wy X hy
7 2 80 x 52,74 x 68 3 14 x 6,14 x 17,13 x 14
8 3 83 x 95,45 x 48,95 x 63 5 7 x 10, 3(19 x 8), 18 x 16
9 2 79 x 82,79 x 36 7 2(17 x 19), 2(13 x 11), 3(6 x 10)
10 3 32 x 85,45 x 97,78 x 86 8 2(14 x 18), 3(17 x 19), 2(12 x 15), 7 x 13
11 2 45 x 42,36 x 71 7 9 x 15, 3(14 x 8), 3(19 x 10)
0 5 47 x 71,71 x 96, 3(32 x 51) 10 16 x 9, 3(19 x 13), 3(17 x 12), 3(18 x 17)
1 2 62 X 65,38 x 91 3 2(20 x 18), 11 x 5
2 2 100 x 62,69 x 62 7 18 x 5, 3(13 x 19), 3(17 x 15)
3 2 61 x 47,84 x 91 11 6 x 6, 3(20 x 5), 15 x 12, 3(17 x 18), 3(7 x 15)
4 3 90 x 82,42 x 52,91 x 35 12 3(13 x 13), 5 x 18, 3(8 x 8), 2(9 x 15), 3(10 x 18)
97 12 5 2 93 x 96,95 x 54 11 1 2(8 x 15), 2(16 x 15), 15 x 13, 3(11 x 5), 3(10 x 5)
6 2 67 x 97,72 X 65 5 3(9 x 18), 2(14 x 14)
7 2 43 x 81,58 x 100 5 2(11 x 6), 18 x 17,9 x 7,8 x 13
8 3 37 x 58,48 x 40,54 x 93 4 16 x 20, 3(10 x 13)
9 3 63 x 69,71 x 52,50 x 36 4 2(15 x 17), 2(19 x 19)
10 2 89 x 50,94 x 56 8 3(5 x 5), 14 x 11,13 x 11, 3(5 x 20)
11 2 91 x 67,57 x 72 7 15 x 17,18 x 16, 2(7 x 18), 3(13 x 19)
0 2 93 x 73,38 x 66 9 3(15 x 13), 13 x 11, 3(15 x 5), 2(8 x 15)
1 3 94 x 36,53 x 41,100 x 64 5 2(20 x 16), 3(6 x 12)
2 2 69 x 98,92 x 99 8 2(17 x 19), 3(8 x 10), 3(8 x 17)
3 3 75 x 42,36 x 41,66 x 47 3 2(19 x 12), 14 x 17
4 3 2(35 x 40), 59 x 64 9 19 x 11,17 x 11,6 x 20, 3(18 x 17), 3(11 x 6)
8 12 5 2 71 x 51,53 x 31 6 3 3(19 x 14), 3(15 x 15)
6 2 73 x 55,71 x 61 6 2(14 x 18), 2(5 x 19), 2(15 x 16)
7 2 93 x 34,35 x 74 5 2(12 x 17), 9 x 15, 2(19 x 9)
8 3 99 x 49, 2(37 x 69) 14 3(14 x 5), 2(7 x 5), 3(15 x 15), 3(19 x 18), 3(9 x 19)
9 2 65 x 81,31 x 61 12 3(11 x 13), 3(7 x 8), 3(6 x 15), 3(6 x 9)
10 2 79 x 48,75 x 73 4 20 x 19, 3(12 x 7)
11 2 89 x 72,58 x 91 12 2(15 x 14), 2(10 x 17), 2(7 x 18), 3(11 x 20), 3(15 x 18)
0 3 70 %X 66,90 x 86,36 x 44 7 12 x 20, 2(8 x 20), 15 x 16, 2(9 x 6), 12 x 9
1 3 75 X 85,47 x 59,32 x 38 6 14 x 19,8 x 11,7 x 10, 3(6 x 5)
2 3 99 x 44,45 x 83,65 x 95 5 10 x 6,15 x 20, 3(16 x 10)
3 3 86 x 72,48 x 81,72 x 42 4 9 x 12,10 x 12,11 x 14,7 x 14
4 2 99 x 35,48 x 43 6 5 x 5, 2(10 x 11), 3(6 x 10)
29 12 5 3 39 x 43,72 x 55,52 x 60 6 1 2(18 x 12), 2(11 x 6), 5 x 15,9 x 13
6 2 30 x 34,81 x 84 4 17 x 10, 3(6 x 7)
7 3 81 x 48,46 x 32,38 x 36 9 9 x 15,11 x 9, 3(5 x 18), 2(13 x 12), 2(13 x 6)
8 3 89 X 65,99 X 66,46 X 66 6 5x%x9, 2(8 x16), 11 x 5,6 x 16,10 x 11
9 3 40 x 92,46 x 49,70 x 67 8 19 x 15,20 x 15, 3(8 x 17), 3(12 x 10)
10 3 76 x 42,66 x 90,85 x 60 10 2(9 x 9), 3(11 x 14), 3(20 x 9), 2(14 x 14)
11 5 91 x 86, 2(46 x 39), 2(41 x 41) 11 3(16 x 20), 2(19 x 16), 3(6 x 7), 3(20 x 15)
0 3 34 x 50,34 x 38,98 x 33 3 26 x7),16x8
1 3 49 x 78,53 x 70,84 x 100 2 8x 19,9 x 14
2 3 79 %X 96,69 x 43,76 x 73 8 20 x 5, 3(5 x 7), 17 x 10, 2(12 x 12), 5 x 13
3 2 50 x 98,60 x 59 9 2(5 x 8), 3(20 x 13), 2(18 x 16), 2(13 x 15)
4 3 36 x 100,90 x 41,73 x 97 5 8 x 15,16 x 19, 2(17 x 11),7 x 7
30 12 5 3 82 % 96,51 x 40,55 x 47 6 9 3(9 x 8), 20 x 18, 2(10 x 9)
6 3 50 x 78,77 x 35,66 x 79 4 39x7),11 x10
7 2 44 x 45,76 x 54 11 8 x 17, 3(11 x 7), 3(8 x 20), 12 x 14, 3(14 x 11)
8 3 62 x 71,93 x 67,90 x 93 4 15 x 13, 3(15 x 15)
9 3 89 x 62,75 x 86,63 x 40 3 17 x 9, 2(8 x 18)
10 3 38 x 59,59 x 71,100 x 51 4 15 x 13, 3(10 x 5)
11 5 35 x 99, 2(46 x 94), 2(61 x 51) 10 3(19 x 16), 4(15 x 20), 3(18 x 17)
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