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A B S T R A C T

In Birgin et al. (2020) the multi-period two-dimensional non-guillotine cutting stock problem with usable
leftovers was introduced. At each decision instant, the problem consists in determining a cutting pattern for a
set of ordered items using a set of objects that can be purchased or can be leftovers of previous periods; the goal
being the minimization of the overall cost of the objects up to the considered time horizon. Among solutions
with minimum cost, a solution that maximizes the value of the leftovers at the end of the considered horizon
is sought. A forward-looking matheuristic approach that applies to this problem is introduced in the present
work. At each decision instant, the objects and the cutting pattern that will be used is determined, taking into
account the impact of this decision in future states of the system. More specifically, for each potentially used
object, an attempt is made to estimate the utilization rate of its leftovers and thereby determine whether the
object should be used or not. The introduced approach is compared with an exact off-the-shelf commercial
solver and a myopic technique. Numerical experiments show the efficacy of the proposed approach.
1. Introduction

In this paper, we consider the multi-period two-dimensional non-
guillotine cutting stock problem with usable leftovers. In the problem,
𝑃 periods of time denoted by [𝑠 − 1, 𝑠] for 𝑠 = 1,… , 𝑃 are considered;
period [𝑠−1, 𝑠] corresponding to 𝑡𝑠−1 ≤ 𝑡 ≤ 𝑡𝑠, where 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑃 are
given decision time instants. Small rectangular pieces of varying sizes
(named items) can be ordered at any instant 𝑡 between 𝑡0 and 𝑡𝑃−1.
However, assuming the discrete time convention, if an item is ordered
at an instant 𝑡 such that 𝑡𝑠−1 < 𝑡 ≤ 𝑡𝑠 for some 𝑠 ∈ {1,… , 𝑃−1}, then it is
assumed the item was ordered at instant 𝑡𝑠. All items ordered at instant
𝑡𝑠 must be produced between 𝑡𝑠 and 𝑡𝑠+1 and delivered at instant 𝑡𝑠+1.
Raw material is available in the form of large rectangular purchasable
pieces (named purchasable objects) or as usable leftovers of previous
periods, i.e. parts of objects purchased at previous periods that were not
used to produce items. (Remains of the cutting process can be classified
as usable leftovers or can be discarded as scrap. Usable leftovers will be
formally defined in Section 2, but roughly speaking they cannot be very
old and must satisfy size constraints.) At each instant 𝑡𝑠, ordered items
are known and the problem consists in selecting objects to be purchased
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and existent leftovers to produce all ordered items. The cutting pattern
of each object (leftover or purchased) must also be determined. The
problem is said to be two-dimensional because it involves the width
and the height of items and objects; while it is said to be non-guillotine
because cuts are not restricted to be guillotine cuts. Assuming the
material is anisotropic, rotations of the items are not allowed. Objects
as well as leftovers can produce new leftovers. The amount of leftovers
in stock is maintained under control with a parameter 𝜉 ∈ {0, 1,… , 𝑃 }
that determines that parts (leftovers, leftovers of leftovers, etc.) of an
object purchased at instant 𝑡𝑠 can only be used at instants 𝑡𝑠+1,… , 𝑡𝑠+𝜉 .
(If 𝜉 = 0, the problem has no leftovers at all; while, if 𝜉 = 1, leftovers
can only be used in the period immediately following the period in
which they were generated.) The goal is to minimize the overall cost
of objects purchased to produce all orders from instant 𝑡0 to instant
𝑡𝑃−1 and, among the minimum cost solutions, to choose one in which
the value of the usable leftovers remaining at instant 𝑡𝑃 (end of the
considered time horizon) is maximized.
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As introduced in Birgin et al. (2020) and described in the paragraph
above, the problem includes two hierarchically ordered objectives re-
lated to the cost of raw material and keeps the stock under control by
constraining it, with parameter 𝜉, to be proportional to incoming or-
ders. Alternatively, the cost of inventories could have been included in
the objective function. In this paper, we chose to follow the formulation
proposed in Birgin et al. (2020), which assumes that there is installed
and available capacity for storage and handling of stocks and minimizes
the raw material cost by taking into account the leftovers.

In the current work, we propose a forward-looking matheuristic
to solve medium- and large-sized instances of the described problem.
Forward-looking strategies have already been used with great success in
different types of discrete optimization problems; see, for example, Ron-
coni and Powell (2010), Powell (2007) and the references therein. In
a training phase, the method attempts to estimate the proportion of
each generated usable leftover that will be effectively used to produce
items ordered in forthcoming periods. With this information, at a given
period, a more expensive object can be purchased if the estimated
future use of its leftovers points to future savings. A subproblem is
solved per period. The decision variables determine the objects the
must be purchased, the leftovers from previous periods that will be
used, and their cutting pattern. All ordered items must be produced;
and the goal is to minimize an objective function that, by discounting
the cost of leftovers that are assumed to be used in the near future to
produce ordered items within the considered time horizon, minimize
the effective cost of the raw material needed to produce the items
ordered in the period. The estimation of the effective usage of leftovers
being generated, that is required to estimate the actual cost of the raw
material, constitutes the forward-looking ingredient of the method. At
the end of each training cycle, the estimated utilization proportion of
each leftover is compared with its actual utilization proportion, and
the estimate is updated. The updating rule and the stopping criterion
ensure that the number of training cycles is finite.

The proposed method is calibrated with the instances with four
periods considered in Birgin et al. (2020); and then evaluated on a new
set of instances with four, eight, and twelve periods. The performance
of the method is compared with a myopic approach on the new set
of thirty instances with up to twelve periods. For the new (small)
instances with four periods, an additional comparison with CPLEX is
also presented. The myopic approach differs with the forward-looking
approach only in the objective function being minimized at each period.
While the forward-looking approach considers the possible future use
of letfovers, the myopic approach greedily minimizes the cost of the
objects necessary to produce the ordered items of the period. The
problem includes a parameter that tells for how many periods, after
being generated, a leftover is available for use, thus keeping the stock
under control. The larger the durability of the leftovers, the greater
the opportunity to save with the acquisition of purchasable objects.
Experiments show that the forward-looking approach outperforms the
myopic approach by a large extent and that, the greater the number of
periods or the larger the durability of usable leftovers, the greater the
advantage.

The problem considered in the present work was proposed in Birgin
et al. (2020), where a mixed integer linear programming model was
introduced and instances with up to four periods were solved using
CPLEX. However, no solution method has yet been proposed to deal
with larger instances of the problem. The single-period version of the
problem was considered in Andrade et al. (2014), where a discussion
related to alternative definitions of usable leftovers was presented.
Several papers in the literature, many of them based on real-world
applications, address the one-dimensional cutting stock problem with
usable leftovers; see the pioneers’ works (Roodman, 1986; Scheithauer,
1991) and the more recent works (Ali et al., 2021; Baykasoglu & Özbel,
2021; Cherri et al., 2013, 2014; do Nascimento et al., 2022; Poldi &
2

Arenales, 2010; Tomat & Gradišar, 2017). On the other hand, only a few
publications tackle the two-dimensional case considered in the present
work.

In all publications dedicated to the one-dimensional problem men-
tioned in the previous paragraph, a multi-period scenario is considered
and a single threshold determines whether a cutting pattern leftover
is disposed of as trim-loss or is a usable leftover. In particular, Tomat
and Gradišar (2017) focuses on determining the optimal amount of
usable leftovers that should be kept in stock in order to make good
use of the raw material and at the same time minimize the cost of
stock handling. In Cherri et al. (2013), a heuristic that prioritizes the
use of leftovers in order to control their stock quantity is presented.
A rolling horizon scheme for the same problem is proposed in Poldi
and Arenales (2010). The subproblem of each period is solved with
a simplex method with column generation and different strategies
are considered in order to obtain integer solutions through rounding.
A survey that reviews published studies up to 2014 can be found
in Cherri et al. (2014). A recent work (do Nascimento et al., 2022)
integrates the problem with the lot-sizing problem. In the problem
under consideration, it is possible to bring forward the production of
items with known demand in a future period. A relax-and-fix approach
is proposed that solves the subproblems with a simplex method with
column generation. Other recent works present practical applications
in the marble industry (Baykasoglu & Özbel, 2021) and in the use of
leftover piping in construction (Ali et al., 2021).

Exact and non-exact two- and three-stage two-dimensional cutting
stock problems with leftovers are considered in Silva et al. (2010). In
the considered problem, a single item is cut from a raw material object
at a time, through one or two guillotine cuts, generating zero, one, or
two ‘‘residual objects’’. A MILP model that extends the one-cut model
presented in Dyckhoff (1981) for the one-dimensional cutting stock
problem is introduced; and numerical experiments solving real-world
instances of the furniture industry and instances from the literature
are presented. MILP models are solved with CPLEX. On the one hand,
the goal is minimizing the number of cuts. On the other hand, several
extensions, such as minimizing the number of used raw material objects
(that are all of the same type), minimizing the length of the cuts,
minimizing waste, allowing rotations, and considering multiple type
of objects are also considered. One of the extensions, that points to
attributing a value to the leftovers, opens the possibility of embedding
the considered problem in a multi-period framework, as its was later
done by the same authors in Silva et al. (2014). In Silva et al. (2014),
the problem is integrated with the lot-sizing problem with the aim
of minimizing a total cost that includes material, waste and storage
costs. In the problem under consideration, anticipating the produc-
tion of items maximizes raw material utilization while incurring stock
costs; and a balance between these conflicting objectives is sought by
minimizing their pricing. Two MILP models that do not depend on
cutting patterns generation and two heuristics based on the industrial
practice are presented. In contrast to the problem considered in the
present work, at each period, two-stage non-exact cutting patterns are
generated. In a brief contribution (Chen et al., 2015), a single-period
problem with three-stage cutting patterns is considered in which the
leftovers consist of remnants of the first cutting stage, the objective
being to minimize the difference between the object cost and the
value of the usable leftovers generated. A real-world multi-period three-
dimensional cutting problem related to the supply of steel blocks in
the metalworking is considered in Viegas et al. (2016). Since remnants
from one period can be used to produce items ordered in future periods,
the problem considers leftovers; the objective being to keep stock
growth under control. For the problem at hand, constructive heuristic
procedures are proposed.

The rest of this paper is organized as follows. Section 2 provides a
formal description of the multi-period two-dimensional non-guillotine
cutting stock problem with leftovers. Section 3 introduces the proposed
matheuristic with a looking-ahead feature. Section 4 presents numerical
experiments. Conclusions and lines for future research are given in the

last section.
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Fig. 1. Pictures (a) and (b) illustrate the two possible ways in which two leftovers can be generated from an object by performing a vertical and a horizontal guillotine pre-cut.
In case (a), the vertical guillotine pre-cut is made first; while, in case (b), the horizontal guillotine pre-cut is made first.
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2. The multi-period two-dimensional non-guillotine cutting stock
problem with leftovers

In this section, the multi-period two-dimensional non-guillotine
cutting stock problem with usable leftovers is described; and its mixed
integer linear programming formulation introduced in Birgin et al.
(2020) is presented. The (single-period) two-dimensional non-guillotine
cutting stock problem with leftovers was introduced in Andrade et al.
(2014) and extended to the multi-period framework in Birgin et al.
(2020). One of the main features of the problem is that, when an object
is used to cut items from it, two leftovers are obtained by performing
a couple of guillotine pre-cuts on the object that separate the leftovers
from the cutting area of the object (region from where the items will
be cut); see Fig. 1. Of course, the leftovers are optional and either one
or both can be empty, i.e. have zero area. It should be noted that,
regardless of whether or not there are leftovers and, if there are, how
they are separated from the object, the items are cut from the cutting
area of the object in a non-guillotine pattern. Given a catalogue of
items, we say a leftover is usable if it can fit at least an item from
the catalogue. In this case, the leftover’s value is given by its area
times the cost per unit of area of the object. Otherwise, the leftover is
disposable and has no value at all. It is worth noting that this definition
of leftovers implies that any part of the cutting area of the object that
is not used to produce an item is considered waste. See Andrade et al.
(2016) and Andrade et al. (2014) for other definitions of leftovers in
two-dimensional problems. Andrade et al. (2014) includes a detailed
description of the single-period version of the problem, with several
examples. Unlike the multi-period model presented in Birgin et al.
(2020), the model introduced in this section considers time instants 𝑠
from 𝑝 to 𝑃 . The possibility of choosing the initial and final instants of
the model gives the necessary flexibility to formulate subproblems in
algorithms of the rolling horizon type as the one that will be presented
later.

Let 𝑝 and 𝑃 satisfying 𝑝 < 𝑃 be the first and the last instant to
be considered, respectively. For each instant 𝑠 = 𝑝,… , 𝑃 − 1, there
are given 𝑚𝑠 purchasable objects 𝑠𝑗 with width 𝑊𝑠𝑗 , height 𝐻𝑠𝑗 , and
cost 𝑐𝑠𝑗 per unit of area (𝑗 = 1,… , 𝑚𝑠) and a set of 𝑛𝑠 ordered items
𝑠𝑖 with width 𝑤𝑠𝑖 and height ℎ𝑠𝑖 (𝑖 = 1,… , 𝑛𝑠). A catalogue composed
by 𝑑 items ̄𝑖 with width 𝑤̄𝑖 and height ℎ̄𝑖 (𝑖 = 1,… , 𝑑) is also given.
A parameter 𝜉 ∈ [0, 𝑃 − 𝑝] says that leftovers generated within a
period [𝑠, 𝑠+1) remain valid up to period [𝑠+ 𝜉, 𝑠+ 𝜉+1). By definition,
each object generates two leftovers. This means that the number of
objects at instant 𝑠 is given by
3

̄ 𝑠 = 𝑚𝑠 + 2 𝑚̂𝑠−1 for 𝑠 = 𝑝,… , 𝑃 , (1)

where

̂ 𝑠 =
min{𝑠−𝑝,𝜉−1}

∑

𝓁=0
2𝓁𝑚𝑠−𝓁 , for 𝑠 = 𝑝,… , 𝑃 − 1, (2)

stands for the number of objects that, at period [𝑠, 𝑠 + 1), generate
leftovers, 𝑚̂𝑝−1 = 0 (i.e. no leftovers coming from previous periods at the
first considered instant 𝑠 = 𝑝), and 𝑚𝑃 = 0 (i.e. no purchasable objects
at the last considered instant 𝑠 = 𝑃 ). Note that, since, by definition,
there are no purchasable objects at instant 𝑃 , 𝑚̄𝑃 represents the number
of leftovers available at instant 𝑃 . The problem consists in minimizing
the overall cost of the purchasable objects required to produce the items
ordered at instants 𝑝,… , 𝑃 − 1 making use of leftovers; and, among
all solutions with minimum cost, maximizing the value of the usable
leftovers at instant 𝑃 . See Figs. 2 and 3. Fig. 2 describes a toy instance
of the problem; while Fig. 3 exhibits two different feasible solutions.

Purchasable objects 𝑠𝑗 (𝑠 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚𝑠) have a given
ost 𝑐𝑠𝑗 per unit of area. The value of an usable leftover is given by
ts area times its cost per unit of area; and the cost per unit of area of

leftover corresponds to the cost per unit of area of the purchasable
bject from which the leftover comes from. In order to make this
elation, we associate with each (purchasable or leftover) object 𝑠𝑗
𝑠 = 𝑝,… , 𝑃 , 𝑗 = 1,… , 𝑚̄𝑠) an expiration date 𝑒𝑠𝑗 in such a way that,

if 𝑠𝑗 is a purchasable object, we define 𝑒𝑠𝑗 = 𝜉; while if 𝑠𝑗 is a
leftover then we define 𝑒𝑠𝑗 as the expiration date of the object from
which it comes from reduced by one. Clearly, 𝑒𝑠𝑗 ≥ 0, since objects with
null expiration date do not generate leftovers. Let 𝑗𝑠1 ≤ 𝑗𝑠2 ≤ ⋯ ≤ 𝑗𝑠𝑚̂𝑠
be the indices of the 𝑚̂𝑠 objects that generate leftovers in the period
[𝑠, 𝑠 + 1); and let us define that, at instant 𝑠 + 1, objects 𝑠+1,𝑚𝑠+1+2𝑘−1
and 𝑠+1,𝑚𝑠+1+2𝑘 correspond to the ‘‘top leftover’’ and to the ‘‘right-
hand-side leftover’’ of object 𝑠,𝑗𝑠𝑘

, respectively. Thus, 𝑐𝑠+1,𝑚𝑠+1+2𝑘−1 =
𝑐𝑠+1,𝑚𝑠+1+2𝑘 = 𝑐𝑠,𝑗𝑠𝑘 and 𝑒𝑠+1,𝑚𝑠+1+2𝑘−1 = 𝑒𝑠+1,𝑚𝑠+1+2𝑘 = 𝑒𝑠,𝑗𝑠𝑘 − 1. The
relevant costs are the costs 𝑐𝑃 𝑗 (𝑗 = 𝑚𝑃 + 1,… , 𝑚̄𝑃 ) that correspond
to the value (per unit of area) of the leftovers available at instant 𝑃 ,
i.e. at the end of the considered time horizon, that are the leftovers
whose value must be maximized. For a given instant 𝑠 (𝑠 = 𝑝,… , 𝑃 −1)
and the expiration dates 𝑒𝑠𝑗 of the 𝑚̄𝑠 objects available at the instant,
the 𝑚̂𝑠 ≤ 𝑚̄𝑠 indices 𝑗𝑠1 , 𝑗

𝑠
2 ,… of the objects that potentially generate

leftovers can be computed as follows. Start with 𝑘 = 0 and, for 𝑗 from 1
to 𝑚̄𝑠, if 𝑒𝑠𝑗 > 0 then increase 𝑘 by one and set 𝑗𝑠𝑘 = 𝑗. Finish by setting
̂ 𝑠 = 𝑘.

The description of the problem’s variables follows. Variables 𝑣𝑠𝑖𝑗 ∈
{0, 1} (𝑠 = 𝑝,… , 𝑃 −1, 𝑗 = 1,… , 𝑚̄𝑠, 𝑖 = 1,… , 𝑛𝑠) assign items to objects
(𝑣𝑠𝑖𝑗 = 1 if item 𝑠𝑖 is assigned to object 𝑠𝑗 ; and 𝑣𝑠𝑖𝑗 = 0 otherwise).
Variables 𝑢𝑠𝑗 ∈ {0, 1} (𝑠 = 𝑝,… , 𝑃 −1, 𝑗 = 1,… , 𝑚𝑠) identify whether at

least an item is assigned to object 𝑠𝑗 or not (𝑢𝑠𝑗 = 1 and 𝑢𝑠𝑗 = 0,
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Fig. 2. Illustration of a small instance with 𝑝 = 0, 𝑃 = 3, and 𝜉 = 𝑃 − 𝑝 = 3, meaning that usable leftovers generated at any period remain usable up to instant 𝑃 . The picture
hows the available purchasable objects and the ordered items at each instant 𝑠 ∈ {0, 1, 2}. The numbers of available purchasable objects and ordered items at each instant are
iven by 𝑚0 = 𝑚1 = 𝑚2 = 2 and 𝑛0 = 2, 𝑛1 = 4 and 𝑛2 = 3, respectively. The cost per unit of area of all the objects is one (i.e. 𝑐01 = 𝑐02 = 𝑐11 = 𝑐12 = 𝑐21 = 𝑐22 = 1) and the catalogue
ith 𝑑 = 1 item is composed by an item with 𝑤̄ = 3 and ℎ̄ = 1.
1 1
Fig. 3. Illustration of two solutions that, at each period, may cut ordered items from purchasable objects or from usable leftovers from previous periods. (a) Greedy solution
obtained by a myopic method that, at each decision instant, minimizes the cost of the purchasable objects required to cut the ordered items of that instant, assuming that usable
leftovers from previous periods are free. (b) Solution with minimum total cost of the required purchasable objects and, in addition, maximum value of the usable leftovers at
instant 𝑃 = 3. The cost of the purchased objects in the solution in (a) is 108; while the same cost is 80 in (b).
respectively). Variables 𝜂𝑠𝑗 ∈ {0, 1} (𝑠 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚̄𝑠)
determine if the vertical pre-cut that separates the cutting area from the
leftover in object 𝑠𝑗 is made before the horizontal pre-cut (𝜂𝑠𝑗 = 1) or if
the horizontal pre-cut precedes the vertical pre-cut (𝜂𝑠𝑗 = 0). Variables
𝑡𝑠𝑗 and 𝑟𝑠𝑗 ∈ R (𝑠 = 𝑝,… , 𝑃−1, 𝑗 = 1,… , 𝑚̄𝑠) determine the height of the
top leftover and the width of the right-hand-side leftover of object 𝑠𝑗 ,
respectively. Variables 𝑊̄𝑠𝑗 and 𝐻̄𝑠𝑗 ∈ R (𝑠 = 𝑝,… , 𝑃 , 𝑗 = 1,… , 𝑚̄𝑠)
represent the width and the height of object 𝑠𝑗 . (This is relevant to
the objects that are leftovers of objects purchased at previous periods,
since the dimensions of purchasable objects are constant, i.e. 𝑊̄𝑠𝑗 = 𝑊𝑠𝑗
and 𝐻̄𝑠𝑗 = 𝐻𝑠𝑗 for every 𝑠 whenever 1 ≤ 𝑗 ≤ 𝑚𝑠.) Variables 𝜋𝑠𝑖𝑖′
and 𝜏𝑠𝑖𝑖′ ∈ {0, 1} (𝑠 = 𝑝,… , 𝑃 − 1, 𝑖 = 1,… , 𝑛𝑠, 𝑖′ = 𝑖 + 1,… , 𝑛𝑠)
are auxiliary variables used to avoid the overlapping between items.
Variables 𝛾𝑗 ∈ R (𝑗 = 1,… , 𝑚̄𝑃 ) are related to the value of the area
of the leftovers at instant 𝑃 , i.e. at the end of the considered time
horizon. Variables 𝜃𝑗𝓁 ∈ {0, 1} and 𝜔𝑗𝓁 ∈ R (𝑗 = 1,… , 𝑚̄𝑃 , 𝓁 = 1,… , 𝐿)
are auxiliary variables used to linearize the computation of these areas
(product of the leftovers variable dimensions), where 𝐿 = ⌊log2(𝑊̂ )⌋+1,
𝑊̂ = max{𝑊 ∣ 𝑠 = 𝑝,… , 𝑃 −1, 𝑗 = 1,… , 𝑚 }, and, for further reference,
4

𝑠𝑗 𝑠
𝐻̂ = max{𝐻𝑠𝑗 ∣ 𝑠 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚𝑠}. The auxiliary variables
𝜁𝑗𝑖 ∈ {0, 1} (𝑗 = 1,… , 𝑚̄𝑃 , 𝑖 = 1,… , 𝑑) are used to nullify the value
of the area of a leftover at instant 𝑃 if it cannot fit any item from the
catalogue.

The problem consists in minimizing
(𝑃−1
∑

𝑠=𝑝

𝑚𝑠
∑

𝑗=1
𝑐𝑠𝑗𝑊𝑠𝑗𝐻𝑠𝑗

)(𝑃−1
∑

𝑠=𝑝

𝑚𝑠
∑

𝑗=1
𝑐𝑠𝑗𝑊𝑠𝑗𝐻𝑠𝑗𝑢𝑠𝑗

)

−
𝑚̄𝑃
∑

𝑗=𝑚𝑃 +1
𝑐𝑃 𝑗𝛾𝑗 (3)

subject to
𝑚̄𝑠
∑

𝑗=1
𝑣𝑠𝑖𝑗 = 1, 𝑠 = 𝑝,… , 𝑃 − 1, 𝑖 = 1,… , 𝑛𝑠, (4)

𝑢𝑠𝑗 ≥ 𝑣𝑠𝑖𝑗 , 𝑠 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚̄𝑠, 𝑖 = 1,… , 𝑛𝑠, (5)

𝑢𝑠𝑗 ≤
𝑛𝑠
∑

𝑖=1
𝑣𝑠𝑖𝑗 , 𝑠 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚̄𝑠, (6)

0 ≤ 𝑡 ≤ 𝐻̄ and 0 ≤ 𝑟 ≤ 𝑊̄ , 𝑗 = 1,… , 𝑚̄ , (7)
𝑠𝑗 𝑠𝑗 𝑠𝑗 𝑠𝑗 𝑠
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1
2
𝑤𝑠𝑖 ≤ 𝑥𝑠𝑖 ≤ 𝑊̄𝑠𝑗 − 𝑟𝑠𝑗 + (1 − 𝑣𝑠𝑖𝑗 )𝑊̂ − 1

2
𝑤𝑠𝑖,

𝑠 = 𝑝,… , 𝑃 − 1, 𝑖 = 1,… , 𝑛𝑠, 𝑗 = 1,… , 𝑚̄𝑠, (8)

1
2
ℎ𝑠𝑖 ≤ 𝑦𝑠𝑖 ≤ 𝐻̄𝑠𝑗 − 𝑡𝑠𝑗 + (1 − 𝑣𝑠𝑖𝑗 )𝐻̂ − 1

2
ℎ𝑠𝑖,

𝑠 = 𝑝,… , 𝑃 − 1, 𝑖 = 1,… , 𝑛𝑠, 𝑗 = 1,… , 𝑚̄𝑠, (9)

0 ≤ 𝐻̄𝑠+1,𝓁1 ≤ 𝐻̂𝑢𝑠𝑗 ,
𝑡𝑠𝑗 − (1 − 𝑢𝑠𝑗 )𝐻̂ ≤ 𝐻̄𝑠+1,𝓁1 ≤ 𝑡𝑠𝑗

+(1 − 𝑢𝑠𝑗 )𝐻̂,
0 ≤ 𝑊̄𝑠+1,𝓁1 ≤ 𝑊̂ 𝑢𝑠𝑗 ,

𝑊̄𝑠𝑗 − 𝑟𝑠𝑗 − (1 − 𝜂𝑠𝑗 )𝑊̂ − (1 − 𝑢𝑠𝑗 )𝑊̂ ≤ 𝑊̄𝑠+1,𝓁1 ≤ 𝑊̄𝑠𝑗 − 𝑟𝑠𝑗
+(1 − 𝜂𝑠𝑗 )𝑊̂
+(1 − 𝑢𝑠𝑗 )𝑊̂ ,

𝑊̄𝑠𝑗 − 𝜂𝑠𝑗𝑊̂ − (1 − 𝑢𝑠𝑗 )𝑊̂ ≤ 𝑊̄𝑠+1,𝓁1 ≤ 𝑊̄𝑠𝑗 + 𝜂𝑠𝑗𝑊̂
+(1 − 𝑢𝑠𝑗 )𝑊̂ ,

0 ≤ 𝑊̄𝑠+1,𝓁2 ≤ 𝑊̂ 𝑢𝑠𝑗 ,
𝑟𝑠𝑗 − (1 − 𝑢𝑠𝑗 )𝑊̂ ≤ 𝑊̄𝑠+1,𝓁2 ≤ 𝑟𝑠𝑗

+(1 − 𝑢𝑠𝑗 )𝑊̂ ,
0 ≤ 𝐻̄𝑠+1,𝓁2 ≤ 𝐻̂𝑢𝑠𝑗 ,

𝐻̄𝑠𝑗 − (1 − 𝜂𝑠𝑗 )𝐻̂ − (1 − 𝑢𝑠𝑗 )𝐻̂ ≤ 𝐻̄𝑠+1,𝓁2 ≤ 𝐻̄𝑠𝑗

+(1 − 𝜂𝑠𝑗 )𝐻̂
+(1 − 𝑢𝑠𝑗 )𝐻̂,

𝐻̄𝑠𝑗 − 𝑡𝑠𝑗 − 𝜂𝑠𝑗𝐻̂ − (1 − 𝑢𝑠𝑗 )𝐻̂ ≤ 𝐻̄𝑠+1,𝓁2 ≤ 𝐻̄𝑠𝑗 − 𝑡𝑠𝑗
+𝜂𝑠𝑗𝐻̂
+(1 − 𝑢𝑠𝑗 )𝐻̂,

(10)

for 𝑠 = 𝑝,… , 𝑃−1 and 𝑗 = 𝑗𝑠𝑘 ≤ 𝑚𝑠 for 𝑘 = 1,… 𝑚̂𝑠, with 𝓁1 = 𝑚𝑠+1+2𝑘−1
and 𝓁2 = 𝑚𝑠+1 + 2𝑘,

𝐻̄𝑠𝑗 − 𝐻̂𝑢𝑠𝑗 ≤ 𝐻̄𝑠+1,𝓁1 ≤ 𝐻̄𝑠𝑗 + 𝐻̂𝑢𝑠𝑗 ,
𝑡𝑠𝑗 − (1 − 𝑢𝑠𝑗 )𝐻̂ ≤ 𝐻̄𝑠+1,𝓁1 ≤ 𝑡𝑠𝑗

+(1 − 𝑢𝑠𝑗 )𝐻̂,
𝑊̄𝑠𝑗 − 𝑊̂ 𝑢𝑠𝑗 ≤ 𝑊̄𝑠+1,𝓁1 ≤ 𝑊̄𝑠𝑗 + 𝑊̂ 𝑢𝑠𝑗 ,

𝑊̄𝑠𝑗 − 𝑟𝑠𝑗 − (1 − 𝜂𝑠𝑗 )𝑊̂ − (1 − 𝑢𝑠𝑗 )𝑊̂ ≤ 𝑊̄𝑠+1,𝓁1 ≤ 𝑊̄𝑠𝑗 − 𝑟𝑠𝑗
+(1 − 𝜂𝑠𝑗 )𝑊̂
+(1 − 𝑢𝑠𝑗 )𝑊̂ ,

𝑊̄𝑠𝑗 − 𝜂𝑠𝑗𝑊̂ − (1 − 𝑢𝑠𝑗 )𝑊̂ ≤ 𝑊̄𝑠+1,𝓁1 ≤ 𝑊̄𝑠𝑗 + 𝜂𝑠𝑗𝑊̂
+(1 − 𝑢𝑠𝑗 )𝑊̂ ,

0 ≤ 𝑊̄𝑠+1,𝓁2 ≤ 𝑊̂ 𝑢𝑠𝑗 ,
𝑟𝑠𝑗 − (1 − 𝑢𝑠𝑗 )𝑊̂ ≤ 𝑊̄𝑠+1,𝓁2 ≤ 𝑟𝑠𝑗

+(1 − 𝑢𝑠𝑗 )𝑊̂ ,
0 ≤ 𝐻̄𝑠+1,𝓁2 ≤ 𝐻̂𝑢𝑠𝑗 ,

𝐻̄𝑠𝑗 − (1 − 𝜂𝑠𝑗 )𝐻̂ − (1 − 𝑢𝑠𝑗 )𝐻̂ ≤ 𝐻̄𝑠+1,𝓁2 ≤ 𝐻̄𝑠𝑗

+(1 − 𝜂𝑠𝑗 )𝐻̂
+(1 − 𝑢𝑠𝑗 )𝐻̂,

𝐻̄𝑠𝑗 − 𝑡𝑠𝑗 − 𝜂𝑠𝑗𝐻̂ − (1 − 𝑢𝑠𝑗 )𝐻̂ ≤ 𝐻̄𝑠+1,𝓁2 ≤ 𝐻̄𝑠𝑗 − 𝑡𝑠𝑗
+𝜂𝑠𝑗𝐻̂
+(1 − 𝑢𝑠𝑗 )𝐻̂,

(11)

for 𝑠 = 𝑝,… , 𝑃−1 and 𝑗 = 𝑗𝑠𝑘 > 𝑚𝑠 for 𝑘 = 1,… 𝑚̂𝑠, with 𝓁1 = 𝑚𝑠+1+2𝑘−1
and 𝓁2 = 𝑚𝑠+1 + 2𝑘,

𝑥𝑠𝑖 − 𝑥𝑠𝑖′ ≥ 1
2 (𝑤𝑠𝑖 +𝑤𝑠𝑖′ )
−𝑊̂

[

(1 − 𝑣𝑠𝑖𝑗 ) + (1 − 𝑣𝑠𝑖′𝑗 ) + 𝜋𝑠𝑖𝑖′ + 𝜏𝑠𝑖𝑖′
]

,
−𝑥𝑠𝑖 + 𝑥𝑠𝑖′ ≥ 1

2 (𝑤𝑠𝑖 +𝑤𝑠𝑖′ )
−𝑊̂

[

(1 − 𝑣𝑠𝑖𝑗 ) + (1 − 𝑣𝑠𝑖′𝑗 ) + 𝜋𝑠𝑖𝑖′ + (1 − 𝜏𝑠𝑖𝑖′ )
]

,
𝑦𝑠𝑖 − 𝑦𝑠𝑖′ ≥ 1

2 (ℎ𝑠𝑖 + ℎ𝑠𝑖′ )
−𝐻̂

[

(1 − 𝑣𝑠𝑖𝑗 ) + (1 − 𝑣𝑠𝑖′𝑗 ) + (1 − 𝜋𝑠𝑖𝑖′ ) + 𝜏𝑠𝑖𝑖′
]

,
−𝑦𝑠𝑖 + 𝑦𝑠𝑖′ ≥ 1

2 (ℎ𝑠𝑖 + ℎ𝑠𝑖′ )
−𝐻̂

[

(1 − 𝑣𝑠𝑖𝑗 ) + (1 − 𝑣𝑠𝑖′𝑗 ) + (1 − 𝜋𝑠𝑖𝑖′ ) + (1 − 𝜏𝑠𝑖𝑖′ )
]

,

5

(12)
for 𝑠 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚̄𝑠, 𝑖 = 1,… , 𝑛𝑠, 𝑖′ = 𝑖 + 1,… , 𝑛𝑠,

0 ≤ 𝜔𝑗𝓁 ≤ 𝐻̄𝑃 𝑗 and 𝐻̄𝑃 𝑗 − (1 − 𝜃𝑗𝓁)𝐻̂ ≤ 𝜔𝑗𝓁 ≤ 𝜃𝑗𝓁𝐻̂ for 𝑗

= 𝑚𝑃 + 1,… , 𝑚̄𝑃 ,𝓁 = 1,… , 𝐿, (13)

𝑤̄𝑖 ≤ 𝑊̄𝑃 𝑗 + 𝑊̂ (1 − 𝜁𝑗𝑖) and ℎ̄𝑖 ≤ 𝐻̄𝑃 𝑗 + 𝐻̂(1 − 𝜁𝑗𝑖) for 𝑗

= 𝑚𝑃 + 1,… , 𝑚̄𝑃 , 𝑖 = 1,… , 𝑑, (14)

0 ≤ 𝛾𝑗 ≤
𝐿
∑

𝓁=1
2𝓁−1𝜔𝑗𝓁 and 𝛾𝑗 ≤

( 𝑑
∑

𝑖=1
𝜁𝑗𝑖

)

𝑊̂ 𝐻̂ for 𝑗 = 𝑚𝑃 + 1,… , 𝑚̄𝑃 ,

(15)
and

𝑊̄𝑃 𝑗 =
𝐿
∑

𝓁=1
2𝓁−1𝜃𝑗𝓁 for 𝑗 = 𝑚𝑃 + 1,… , 𝑚̄𝑃 . (16)

The objective function (3) is given by the cost of the used pur-
chasable objects multiplied by a strict upper bound on the value of
the leftovers at instant 𝑃 minus the value of the leftovers at that
instant. Assuming integrality of the constants that define the instance
(see Birgin et al., 2020, §3.7), this composition has the desired effect
of minimizing the cost of the purchased objects and, among solutions
with the same cost, maximizing the value of the leftovers at instant 𝑃 .
Constraints (4) say that each item must be assigned to exactly one
object. Constraints (5) and (6) say that an object 𝑠𝑗 is used (i.e. 𝑢𝑠𝑗 = 1)
if and only if at least an item is allocated to the object. At a first glance,
since the cost of the used objects is being minimized, constrains (6)
may appear to be superfluous. However, forcing 𝑢𝑠𝑗 = 0 when no item
is assigned to object 𝑠𝑗 prevents purchasing and cutting an object to
which no item is being assigned in period 𝑠. Constraints (7) define
the height 𝑡𝑠𝑗 of the top leftover and the width 𝑟𝑠𝑗 of the right-hand-
side leftover of object 𝑠𝑗 . Constraints ((8),(9)) assume, without loss
of generality, that objects have its bottom-left corner in the origin of
the Cartesian two-dimensional space. Constraints ((8),(9)) say that if an
item 𝑠𝑖 is assigned to an object 𝑠𝑗 , that has dimensions 𝑊̄𝑠𝑗 and 𝐻̄𝑠𝑗 ,
then the center (𝑥𝑠𝑖, 𝑦𝑠𝑖) of the item must be placed within the cutting
area of the object that goes from (0, 0) to (𝑊̄𝑠𝑗−𝑟𝑠𝑗 , 𝐻̄𝑠𝑗− 𝑡𝑠𝑗 ). Moreover,
the constraints say the center of each item must be far from the borders
of the cutting area, so the whole item can be placed within the object’s
cutting area. In constraints (10), restrictions on the dimensions of the
leftovers of purchasable objects with positive expiration date are given;
while in (11) the same is done with the dimensions of leftovers of ob-
jects that are leftovers of previous periods. The difference is that, in the
first case, leftovers of a purchasable object must have null dimensions
if the purchasable object is not used (purchased); while, in the second
case, if an object that is a leftover is not used and its expiration date
is strictly positive, then it must pass to the next instant as its own top
or right-hand-side leftover. Constraints (12) model the non-overlapping
of items assigned to the same object. Constraints ((13)–(16)) model the
value 𝛾𝑗 of the 𝑗th leftover of the last instant 𝑃 , i.e. object 𝑃 𝑗 . Recall
that, in case a leftover can fit at least an item from the catalogue, its
value is given by its area (product of its variable dimensions) times
the value per unit of area of the purchasable object that generated the
leftover. Otherwise, the value of the leftover is null. (See Birgin et al.,
2020, §3.7.1 for details.) In ((13)–(16)), the index 𝑗 starts from 𝑚𝑃 +1.
This is the same as saying that it starts at 1, since 𝑚𝑃 = 0 by definition.
However, we opted by writing this way because it simplifies the re-
definition of the meaning of variables 𝛾 in the next section. Note also
that variables 𝜔, 𝜃, 𝜁 , and 𝛾, differently from all other variables in the
model, do not have an index 𝑠 that relates them to an instant of the
multi-period scenario. This is because they all refer to the last instant 𝑃 .
Note that the areas of the leftovers of the last instant of the considered
horizon play a fundamental role in the objective function (3); while for
all other instants (including instant 𝑃 ) only the (variable) dimensions

of the leftovers are required, but not their areas.
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3. Forward-looking proposed heuristic

The mixed integer linear programming (MILP) problem (3)–(16)
will be named (𝑝, 𝑃 ) from now on. This notation allow us to refer
to the single-period problem (𝜅, 𝜅 + 1) for some 𝜅 ∈ {𝑝,… , 𝑃 − 1}.
In problem (𝜅, 𝜅 + 1), it is assumed that (a) all decisions of instants
𝑠 = 𝑝,… , 𝜅 − 1 have already been taken; (b) quantities and dimensions
of the ordered items and available objects (that may be purchasable
or leftovers from previous periods) of instant 𝜅 are known; and (c) the
last instant of the considered horizon is pushed back and artificially
considered as if it were 𝑃 = 𝜅 + 1. Thus, the single-period prob-
lem (𝜅, 𝜅 + 1) coincides with the single-period problem introduced
in Andrade et al. (2014). This means that problem (𝜅, 𝜅+1) consists in
determining a cutting pattern to produce all items ordered at instant 𝜅
minimizing the cost of the purchased objects and, among solutions with
minimum cost, choosing one that maximizes the value of the leftovers
at instant 𝜅 + 1. The particularity of (𝜅, 𝜅 + 1) with respect to the
single-period problem introduced in Andrade et al. (2014) is that in
(𝜅, 𝜅 + 1) there are some objects that can be used for free. This is
because the summation in (3) goes from 1 up to 𝑚𝜅 ; meaning that the
costs of objects numbered from 𝑚𝜅 + 1 up to 𝑚̄𝜅 , that are the leftovers
of previous periods, are not included in the objective function. Special
attention must also be given to the role of variables 𝛾𝑗 in (𝜅, 𝜅 + 1).
On the one hand, in (𝑝, 𝑃 ), their indices goes from 1 (because 𝑚𝑃 = 0
by definition) to 𝑚̄𝑃 and they represent the areas of the leftovers at
instant 𝑃 . On the other hand, in (𝜅, 𝜅 + 1), since 𝑃 is redefined as if
it were 𝜅 + 1, the indices of variables 𝛾 go from 𝑚𝜅+1 + 1 to 𝑚̄𝜅+1; and
variables 𝛾 represent the areas of the leftovers at instant 𝜅 + 1.

If we assume that the available computational capacity is enough
to solve (with an exact commercial solver) instances with no more
than a single period, a heuristic approach to tackle the original multi-
period problem must be considered. At each instant 𝜅, a decision has
to be made. The decision consists in selecting a set of objects (between
the 𝑚𝜅 purchasable objects 𝜅𝑗 for 𝑗 = 1,… , 𝑚𝜅 or leftovers 𝜅𝑗 for
𝑗 = 𝑚𝜅 + 1,… , 𝑚̄𝜅 from previous periods) and a cutting pattern to
produce, along period [𝜅, 𝜅 + 1), the 𝑛𝜅 items ordered at instant 𝜅. The
simplest (matheuristic) approach would be to solve the single-period
problem (𝜅, 𝜅 +1), for 𝜅 = 𝑝,… , 𝑃 −1. Substituting 𝑃 by 𝜅 +1 in (3),
we have that the objective function of problem (𝜅, 𝜅 +1) is given by
( 𝜅
∑

𝑠=𝑝

𝑚𝑠
∑

𝑗=1
𝑐𝑠𝑗𝑊𝑠𝑗𝐻𝑠𝑗

)( 𝜅
∑

𝑠=𝑝

𝑚𝑠
∑

𝑗=1
𝑐𝑠𝑗𝑊𝑠𝑗𝐻𝑠𝑗𝑢𝑠𝑗

)

−
𝑚̄𝜅+1
∑

𝑗=𝑚𝜅+1+1
𝑐𝜅+1,𝑗𝛾𝑗 . (17)

Since in problem (𝜅, 𝜅 +1) it is assumed that all decisions of instants
𝑠 = 𝑝,… , 𝜅 − 1 have already been taken, we have that 𝑢𝑠𝑗 for 𝑠 =
𝑝,… , 𝜅 − 1 and 𝑗 = 1,… , 𝑚̄𝜅 are constant. Thus, minimizing (17) is
equivalent to minimizing

𝐶𝜅

𝑚𝜅
∑

𝑗=1
𝑐𝜅𝑗𝑊𝜅𝑗𝐻𝜅𝑗𝑢𝜅𝑗 −

𝑚̄𝜅+1
∑

𝑗=𝑚𝜅+1+1
𝑐𝜅+1,𝑗𝛾𝑗 , (18)

where, as in (3),

𝐶𝜅 =
𝜅
∑

𝑠=𝑝

𝑚𝑠
∑

𝑗=1
𝑐𝑠𝑗𝑊𝑠𝑗𝐻𝑠𝑗

is a constant. Note that 𝐶𝜅 corresponds to the total cost of all pur-
chasable objects existent from the first instant 𝑝 up to instant 𝜅.
Therefore, it is a strict upper bound on the value of the leftovers that
could have been generated up to instant 𝜅+1. Thus, multiplying the first
summation in (18) by 𝐶𝜅 has the desired effect of making one unit of
this summation to be more relevant that the whole second summation
in (18). It is in this way that the cost of the used purchasable objects
is minimized and, among solutions with minimum cost, a solution
that maximizes the value of the leftovers at the end of the considered
horizon, in this case instant 𝜅+1, is sought. Note that this interpretation
requires the first summation in (18) to assume integer values only;
see Andrade et al. (2014) for details.
6

The main drawback of a myopic/greedy strategy like the one de-
scribed above is that the overall cost is not being minimized at all.
This strategy was used to find the solution depicted in Fig. 3(a) to
the instance described in Fig. 2. Its flaw is to ignore the effect in the
future of the decisions made at each instant 𝜅. Fig. 3(b) shows that,
by buying a more expensive object at instant 𝜅 = 0, a better solution
can be found. In addition, note that, at each instant 𝜅, the number of
available objects 𝑚𝜅 is finite. If we redefine 𝑚1 = 0 for the instance
in Fig. 2 (i.e. no purchasable objects available at instant 𝜅 = 1), then
the choice of purchasing the small object 02 at instant 𝜅 = 0 produces
an infeasible solution. This is because the 3 × 6 leftover of 02 is not
enough to produce the items ordered at 𝜅 = 1 and, since we redefined
𝑚1 = 0, no other object is available at 𝜅 = 1. So, the myopic approach
is unable to find a feasible solution to the modified instance.

Assume that we are at an instant 𝜅 and that at that instant there
are two different objects (one cheaper and smaller and another more
expensive but larger) that can be used to produce the 𝑛𝜅 ordered items.
Buying the cheapest object would be the myopic choice. However,
assume that buying and using the more expensive object produces two
leftovers that, by being used in forthcoming periods, produce an overall
saving. Quantifying this saving and using it to decide which object
to buy at instant 𝜅 is the looking-ahead strategy we are looking for.
An optimistic view would consist in subtracting from the cost of each
object the value of its leftovers. We say this view is optimistic because
it assumes that 100% of the object’s leftovers will be used to produce
items (and, thus, savings) in forthcoming periods. In a more realistic
view, each leftover has a different utilization rate that depends on its
dimensions and on the ordered items in the forthcoming periods.

At any instant 𝜅 + 1, objects 𝜅+1,𝑗 with index 𝑗 between 𝑚𝜅+1 + 1
and 𝑚𝜅+1 + 2𝑚𝜅 correspond to the 2𝑚𝜅 leftovers of the 𝑚𝜅 purchasable
objects that were available at instant 𝜅. Therefore, at instant 𝜅, 𝛾2𝑗−1
and 𝛾2𝑗 correspond to the area of the two leftovers of the purchasable
object 𝜅𝑗 for 𝑗 = 1,… , 𝑚𝜅 (nullified when the object is not purchased
or when the leftover does not fit any item from the catalogue). Thus, if
object 𝜅𝑗 is used, then its optimistic amortized cost, that assumes that
100% of its leftovers will be used, is given by

𝑐𝜅𝑗𝑊𝜅𝑗𝐻𝜅𝑗𝑢𝜅𝑗 − 𝑐𝜅𝑗𝛾2𝑗−1 − 𝑐𝜅𝑗𝛾2𝑗 . (19)

The value of (19) is null if object 𝜅𝑗 is not used because in this
case 𝑢𝜅𝑗 = 𝛾2𝑗−1 = 𝛾2𝑗 = 0. If utilization rates 𝛿𝜅,2𝑗−1, 𝛿𝜅,2𝑗 ∈ [0, 1]
for 𝑗 = 1,… , 𝑚𝜅 were known, then we would be able to compute, at
instant 𝜅, the more realistic amortized cost

𝑐𝜅𝑗𝑊𝜅𝑗𝐻𝜅𝑗𝑢𝜅𝑗 − 𝑐𝜅𝑗
(

𝛿𝜅,2𝑗−1𝛾2𝑗−1 + 𝛿𝜅,2𝑗𝛾2𝑗
)

(20)

of using object 𝜅𝑗 to produce the ordered items. Since we need
the summation of costs to assume integer values, we would approxi-
mate (20) by

𝑐𝜅𝑗𝑊𝜅𝑗𝐻𝜅𝑗𝑢𝜅𝑗 − ⌊𝑐𝜅𝑗
(

𝛿𝜅,2𝑗−1𝛾2𝑗−1 + 𝛿𝜅,2𝑗𝛾2𝑗
)

⌋. (21)

However, since 𝛾2𝑗−1 and 𝛾2𝑗 (𝑗 = 1,… , 𝑚𝜅) are variables of the
problem, (21) cannot be included in the objective function. (It is not
a linear function of continuous and integer variables.) Thus, we need
new integer variables 𝜆𝑗 (𝑗 = 1,… , 𝑚𝜅) and constraints

𝜆𝑗 ≤ 𝑐𝜅𝑗
(

𝛿𝜅,2𝑗−1𝛾2𝑗−1 + 𝛿𝜅,2𝑗𝛾2𝑗
)

for 𝑗 = 1,… , 𝑚𝜅 ; (22)

so we can write the approximation (21) of (20) as

𝑐𝜅𝑗𝑊𝜅𝑗𝐻𝜅𝑗𝑢𝜅𝑗 − 𝜆𝑗 . (23)

We call (23) the amortized cost of object 𝜅𝑗 . Thus, including estima-
tions of the leftovers utilization rates, the objective function (18) of
problem (𝜅, 𝜅 + 1) can be substituted by

𝐶𝜅

𝑚𝜅
∑

(

𝑐𝜅𝑗𝑊𝜅𝑗𝐻𝜅𝑗𝑢𝜅𝑗 − 𝜆𝑗
)

−
𝑚̄𝜅+1
∑

𝑐𝜅+1,𝑗𝛾𝑗 . (24)

𝑗=1 𝑗=𝑚𝜅+1
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Fig. 4. Illustration of a small instance with 𝑝 = 0, 𝑃 = 3. The figure displays the available purchasable objects and the ordered items at each instant 𝑠 ∈ {𝑝,… , 𝑃 − 1}.
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We call (𝛿; 𝜅, 𝜅 + 1), the single-period problem (𝜅, 𝜅 + 1) in which
the objective function is replaced with (24) and constraints (22) are
included. Note that (22) and, in consequence (24), depends on the
unknown constants 𝛿𝜅,2𝑗−1 and 𝛿𝜅,2𝑗 for 𝑗 = 1,… , 𝑚𝜅 .

Let us illustrate the idea of amortized costs with an example. Fig. 4
displays the available purchasable objects and the ordered items of a
small instance with 𝑝 = 0, 𝑃 = 3, and 𝜉 = 𝑃 − 𝑝 = 3, meaning that
usable leftovers generated at any period remain usable up to instant 𝑃 .
The picture shows the available purchasable objects and the ordered
items at each instant 𝑠 ∈ {0, 1, 2}. The numbers of available purchasable
objects and ordered items at each instant are given by 𝑚0 = 3, 𝑚1 =
𝑚2 = 1 and 𝑛0 = 1, 𝑛1 = 3 and 𝑛2 = 2, respectively. The cost per unit of
rea of all the objects is one (i.e. 𝑐01 = 𝑐02 = 𝑐03 = 𝑐11 = 𝑐21 = 1) and

the catalogue with 𝑑 = 2 item is composed by two items with 𝑤̄1 = 7,
ℎ̄1 = 4, 𝑤̄2 = 6, and ℎ̄2 = 5.

At instant 𝑠 = 0, item 01 can be assigned to any of the three avail-
able purchasable objects 01, 02, or 03. Dashed regions in Fig. 5(a–c)
epresent the usable leftovers in each possible assignment. In case (b)
here is only a top usable leftover simply because 𝑊02 = 𝑤01. In case (a)
here is also a top usable leftover only. This is because the right-hand-
ide leftover has width 𝑊02−𝑤01 < min{𝑤̄1, 𝑤̄2}. Thus, it cannot fit any

item of the catalogue and, therefore, it is not usable. In case (c), the
situation described in case (a) occurs for both, the top and the right-
hand-side leftovers; thus none of them are usable. Since all the three
objects have a unitary cost per unit of area (i.e. 𝑐01 = 𝑐02 = 𝑐03 = 1),
purchasing objects 01, 02, and 03 costs 𝑊01 × 𝐻01 = 21 × 17 = 357,

02 × 𝐻02 = 19 × 19 = 361, and 𝑊03 × 𝐻03 = 24 × 13 = 312,
espectively. The greedy choice mandates to buy object 03, that is the
heapest one. However, assuming that usable leftovers will be 100%
sed to produce items in forthcoming periods and reducing the value of
he leftovers from the cost of their respective objects, we obtain, for the
onfigurations depicted in Fig. 5, the amortized costs 357−21 × 6 = 231
nd 361 − 19 × 8 = 209 for objects 01 and 02, respectively. The
mortized cost of object 03 whose usage generates no usable leftovers
oincides with its actual cost. Thus, the optimistic forward-looking
pproach would recommend to purchase object 02.

If the myopic approach is applied to the instance of Fig. 4, then the
olution found is to purchase object 03 at instant 𝑠 = 0 and objects
11 and 21 at instants 𝑠 = 1 and 𝑠 = 2, respectively. This solution
as an overall cost of 592 and has no usable leftovers at instant 𝑠 = 3.
f the optimistic forward-looking approach, that assumes that 100% of
he usable leftovers will be used in forthcoming periods, is used, then
he solution found is the one illustrated in Fig. 6(a). (To simplify the
resentation, unused objects are not being displayed in the figure.) In
his solution, the object with the smallest amortized cost is chosen at
nstant 𝑠 = 0, i.e. object 02. At instant 𝑠 = 1, object 11 is purchased
nd ordered items are produced from the purchased object and from the
eftover of the previous period. At instant 𝑠 = 2 no object is purchased
7

nd the ordered items are produced from a leftover of the leftover of
he object bought at instant 𝑠 = 0. The overall cost of the solution is
21 and a leftover with value 70 remains available at instant 𝑃 = 3.
This solution is clearly better than the solution obtained by the myopic
pproach.) However, it can be noted that the assumption that 100% of
he leftover of object 02 would be used in the next periods turned out
o be false. In fact, the leftover of area 152 was used to produce items
hose areas totalize 102, i.e. an utilization rate of 102∕152 ≈ 0.67. If we

onsider this utilization rate for object 02, then its amortized cost for
he configuration depicted in Fig. 5(b) becomes 361 − 102 = 259. The
mortized cost of object 01 (for the configuration in Fig. 5(a)) remains
he same, i.e. 231, since there is no new information to update the
resumed utilization rate of 100% of its usable leftover. The amortized
ost of object 03 (for the configuration in Fig. 5(a)) continues being
12 as well. Thus, if the problem is solved once again, object 01 is
hosen at instant 𝑠 = 0 to produce the ordered items of instant 𝑠 = 0.

Then, its leftover is used to produce all ordered items of instant 𝑠 = 1;
and object 21 is purchased to produce the items ordered at instant 𝑠 =
. This solution, depicted at Fig. 6(b), has an overall cost of 477 and

it has no usable leftovers at instant 𝑠 = 3. In this solution, the actual
utilization rate of the leftover of object 02 is 314∕357 ≈ 0.88; which
ncreases its amortized cost for the configuration depicted in Fig. 5(b)
rom 231 to 357 − ⌊(314∕357) × 126⌋ = 247. Anyway, it continues to
e the cheapest purchasable object at instant 𝑠 = 0. Thus, a new cycle
ould produce the same solution.

The proposed forward-looking matheuristic approach consists in a
equence of training cycles. In each cycle, the 𝑃 − 𝑝 single-period
roblems (𝛿, 𝜅, 𝜅 + 1) for 𝜅 = 𝑝,… , 𝑃 − 1 are solved with fixed
alues of 𝛿𝜅,2𝑗−1 and 𝛿𝜅,2𝑗 for 𝜅 = 𝑝,… , 𝑃 − 1 and 𝑗 = 1,… , 𝑚𝜅 . In

the 0th cycle, 𝛿0𝜅,2𝑗−1 = 𝛿0𝜅,2𝑗 = 𝛿ini for all 𝜅 and 𝑗, where 𝛿ini ∈
[0, 1] is a given constant. At the end of the 𝜂th cycle, it is possible to
compute the actual fractions 𝑓 𝜂

𝜅,2𝑗−1 and 𝑓 𝜂
𝜅,2𝑗 of each of the two leftover

𝜅+1,𝑚𝜅+1+2𝑗−1 and 𝜅+1,𝑚𝜅+1+2𝑗 of a purchasable object 𝜅𝑗 that were
effectively used to produce items in forthcoming periods for all 𝜅 and
𝑗. Note that here we are talking about items directly produced from the
leftovers 𝜅+1,𝑚𝜅+1+2𝑗−1 and 𝜅+1,𝑚𝜅+1+2𝑗 and also about items produced
from leftovers of these leftovers up to 𝜉 periods after purchasing the
purchasable object 𝜅𝑗 . Thus, each 𝛿𝜂𝜅,2𝑗−1 and 𝛿𝜂𝜅,2𝑗 can be updated
using 𝑓 𝜂

𝜅,2𝑗−1 and 𝑓 𝜂
𝜅,2𝑗 . In particular, we define

𝛿𝜂+1𝜅,2𝑗−1 = (1−𝜎𝜂)𝛿𝜂𝜅,2𝑗−1+𝜎
𝜂𝑓 𝜂

𝜅,2𝑗−1 and 𝛿𝜂+1𝜅,2𝑗 = (1−𝜎𝜂)𝛿𝜂𝜅,2𝑗+𝜎
𝜂𝑓 𝜂

𝜅,2𝑗 , (25)

where 𝜎 ∈ (0, 1) is a given constant and 𝜎𝜂 means 𝜎 to the power of 𝜂.
This means that, at the end of the 𝜂th cycle, new estimations 𝛿𝜂+1𝜅,2𝑗−1
and 𝛿𝜂+1𝜅,2𝑗 of the utilization rates of the two leftovers of object 𝜅𝑗 for
all 𝜅 and 𝑗 are computed as convex combination (parameterized by 𝜎𝜂)
of their previous values 𝛿𝜂𝜅,2𝑗−1 and 𝛿𝜂𝜅,2𝑗 and their actual values 𝑓 𝜂

𝜅,2𝑗−1𝜂
and 𝑓𝜅,2𝑗 in the solution found in the current cycle. Since consecutive
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Fig. 5. Dashed regions represent the usable leftovers in the assignment of item 01 to the three purchasable objects available at instant 𝑠 = 0.

Fig. 6. Different feasible solutions to the instance of Fig. 4. (a) Solution obtained with the optimistic forward-looking approach in which it is assumed that 100% of each usable
leftover is used to produce items in forthcoming periods. (b) Solution obtained with an adaptive forward-looking approach that cycles updating the utilization rate of the leftovers.
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t
a

cycles with the same values of 𝛿’s produce the same solution, it makes
sense to use

max
{𝜅=𝑝,…,𝑃−1,𝑗=1,…,𝑚𝜅}

{

|

|

|

𝛿𝜂+1𝜅,2𝑗−1 − 𝛿𝜂𝜅,2𝑗−1
|

|

|

, ||
|

𝛿𝜂+1𝜅,2𝑗 − 𝛿𝜂𝜅,2𝑗
|

|

|

}

≤ 𝜖, (26)

where 𝜖 > 0 is a given constant, as a stopping criterion.
The forward-looking approach considers the utilization rates of

the top and the right-hand-side leftovers of purchasable objects. We
say these are first-order leftovers. In opposition, when a leftover is
a leftover of a leftover, we say it is a high-order leftover. When an
item is produced from a first-order leftover, its area plays a role in
the utilization rate of the first-order leftover itself. On the other hand,
when an item is produced from a high-order leftover, its area plays a
role in the utilization rate of the first-order leftover that is the ancestor
of the used high-order leftover. Therefore, computing the utilization
rate of the first-order leftovers requires to keep track of their successor
leftovers or, equivalently, to keep track of the ancestors of the high-
order leftovers. Assume we are in the 𝜂th cycle of the forward-looking
approach and that the current instant is instant 𝜅. After having solved
the single-period problem (𝛿𝜂 , 𝜅, 𝜅 + 1) we proceed as follows. (The
supra-index 𝜂 will be omitted for simplicity.) Let 𝑗1 ≤ 𝑗2 ≤ ⋯ ≤
𝑗𝑚̂𝜅

be the indices of the 𝑚̂𝜅 objects that can generate leftovers, that
correspond to the indices 𝑗 of objects 𝜅𝑗 (𝑗 = 1,… , 𝑚̄𝜅) such that
𝑒𝜅𝑗 > 0. Note that if 𝑗𝑘 ≤ 𝑚𝜅 , then 𝜅,𝑗𝑘 is a purchasable object and its
leftovers are first-order leftovers, while if 𝑚𝜅 < 𝑗𝑘 ≤ 𝑚̄𝜅 , then 𝜅,𝑗𝑘 is a
leftover and its leftovers are high-order leftovers. For each object 𝜅,𝑗𝑘
generating leftovers, its leftovers (objects of the next period) are named
𝜅+1,𝑚𝜅+1+2𝑘−1 and 𝜅+1,𝑚𝜅+1+2𝑘. For all 𝑗𝑘 ≤ 𝑚𝜅 , we set the area of the
two corresponding first-order leftovers as

𝐴𝜅+1,𝑚𝜅+1+2𝑘−1 = 𝛾𝑚𝜅+1+2𝑗𝑘−1 and 𝐴𝜅+1,𝑚𝜅+1+2𝑘 = 𝛾𝑚𝜅+1+2𝑗𝑘 , (27)

initialize their used area as

𝑎𝜅+1,𝑚𝜅+1+2𝑘−1 = 𝑎𝜅+1,𝑚𝜅+1+2𝑘 = 0, (28)

nd set their ancestors (or origins) as the purchased object that gener-
ted them, i.e.

𝜅+1,𝑚𝜅+1+2𝑘−1 = 𝑜𝜅+1,𝑚𝜅+1+2𝑘 = (𝜅, 𝑗𝑘). (29)

or all 𝑗𝑘 > 𝑚𝜅 , we make the two corresponding high-order leftovers
nherit the ancestor of the leftover 𝜅,𝑗𝑘 that is generating them, i.e.

𝜅+1,𝑚𝜅+1+2𝑘−1 = 𝑜𝜅+1,𝑚𝜅+1+2𝑘 = 𝑜𝜅,𝑗𝑘 . (30)

Note that the ‘‘ancestor’’ is a pair that saves the instant and the index of
he purchasable object from which the leftover derives.) Finally, taking
nto account the items produced in the single-period problem that was
ust solved, we must update the used area of the first-order leftovers of
ll preceding periods. For each item 𝜅𝑖 (𝑖 = 1,… , 𝑛𝜅), we proceed as
ollows. Variables 𝑣𝜅𝑖𝑗 ∈ {0, 1} indicate to which object the item was
ssigned. By (7), only one of the 𝑣𝜅𝑖𝑗 is equal to one and all the other
re null. Let 𝑗 be the index (between 1 and 𝑚̄𝜅) such that 𝑣𝜅𝑖𝑗 = 1.
his means that the item was assigned to object 𝜅𝑗 . If 𝑗 ≤ 𝑚𝜅 , then
he object is a purchasable objects and there is nothing to be done.
therwise, item 𝜅𝑖 was produced from a leftover. So, we add its area,
iven by 𝑤𝜅𝑖 × ℎ𝜅𝑖, to the used area of the ancestor 𝑜𝜅𝑗 of 𝜅𝑗 , i.e.

𝑜𝜅𝑗 ← 𝑎𝑜𝜅𝑗 +𝑤𝜅𝑖 × ℎ𝜅𝑖. (31)

Note that 𝑜𝜅𝑗 is a pair of the form 𝑜𝜅𝑗 = ([𝑜𝜅𝑗 ]1, [𝑜𝜅𝑗 ]2). So, notation 𝑎𝑜𝜅𝑗
eans 𝑎([𝑜𝜅𝑗 ]1 ,[𝑜𝜅𝑗 ]2).) At the end of the current 𝜂th cycle, we are ready

o compute the actual utilization rates of the first-order leftovers given
y

𝜂
𝜅,2𝑗−1 =

𝑎𝜅+1,𝑚𝜅+1+2𝑗−1

𝐴𝜅+1,𝑚𝜅+1+2𝑗−1
and 𝑓 𝜂

𝜅,2𝑗 =
𝑎𝜅+1,𝑚𝜅+1+2𝑗

𝐴𝜅+1,𝑚𝜅+1+2𝑗
(32)

Then, the 𝛿’s are updated as in (25). If (26) holds, the method stops.
Otherwise, we update 𝜂 ← 𝜂+1 and start a new cycle. The method also
9

stops if in ten consecutive cycles the best solution found so far is not
updated. Algorithm 1 summarizes the whole procedure.

4. Numerical experiments

In this section, we aim to evaluate the performance of the proposed
forward-looking approach. The single-period models (𝜅, 𝜅 + 1) and
(𝛿, 𝜅, 𝜅 + 1) were implemented in C/C++ using the ILOG Concert

echnology. The myopic and the proposed forward-looking matheuris-
ic approaches were also implemented in C/C++. Models and code are
vailable at https://github.com/oberlan/bromro2. Code was compiled
ith g++ from gcc version 7.5.0 (GNU compiler collection) with the

O3 option enabled. Numerical experiments were conducted using a
achine with Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz with
60 GB of RAM memory, and Ubuntu Server 20.04.4 operating system.
ingle-period instances within the myopic and the forward-looking
pproaches were solved using IBM ILOG CPLEX 22.1.0. A solution is
eported as optimal by CPLEX when

bsolute gap = best feasible solution − best lower bound ≤ 𝜀abs

r

elative gap =
|best feasible solution − best lower bound|

10−10 + |best feasible solution|
≤ 𝜀rel, (33)

here, by default, 𝜀abs = 10−6 and 𝜀rel = 10−4, and ‘‘best feasible
olution’’ means the smallest value of the objective function related to a
easible solution generated by the method. The objective functions (3)
nd (24) of models (𝜅, 𝜅 + 1) and (𝛿, 𝜅, 𝜅 + 1), respectively, for
= 𝑝,… , 𝑃 − 1, assume large integer values at feasible points. Thus,
stopping criterion based on a relative error less than or equal to

rel = 10−4 has the undesired effect of stopping the method prematurely.
n the other hand, due to the integrality of the objective function
alues, an absolute error strictly smaller than 1 is enough to prove
he optimality of the incumbent solution. Therefore, in the numerical
xperiments, we considered 𝜀abs = 1 − 10−6 and 𝜀rel = 0. In addition,
odeFileInd and WorkMem parameters were set to 3 and 32,000, respec-

ively; so the Branch & Bound tree is partially transferred to disk if
emory is exhausted. All other parameters of the solver were used
ith their default values. This includes the deterministic parallel MIP
ptimizer to solve a mixed integer programming problem.

.1. Parameters tuning

In a first set of experiments, we aim to analyze the behavior of
he forward-looking approach for variations of its two parameters 𝛿ini
nd 𝜎. Recall that 𝛿ini ∈ [0, 1] corresponds to the initial value of

the leftovers utilization fraction; while 𝜎 ∈ (0, 1) plays a role in the
utilization fraction update rule in (25). Preliminary results, focused
on avoiding premature terminations and thus obtaining good quality
solutions, led us to set 𝜖 = 0.01. In the numerical experiments of
this section, we considered the twenty five instances with four periods
introduced in Birgin et al. (2020), varying their leftovers ‘‘expiration
date’’ parameter 𝜉 ∈ {1, 2, 3, 4}. All instances have up to 3 objects
and up to 9 items per period. For completeness, tables describing
each instance are given in Appendix. The experiments in Birgin et al.
(2020) show that, when applied to these one hundred instances, CPLEX
with a CPU time limit of two hours found an optimal solution in 91
cases. Therefore, we applied the forward-looking approach with all
combinations of 𝛿ini and 𝜎 ∈ {0.5, 0.55,… , 1.0} to these 91 instances and
computed the gap to the known optimal solution computed by CPLEX.

Fig. 7 (top) shows the average gap (over the 91 instances) for
each combination of 𝛿ini and 𝜎. The figure shows that best results are
obtained for the combination (𝛿ini, 𝜎) = (0.9, 0.9). The graphic also
shows that, as desired, small variations in the parameters produce
smalls variations in the average results of the method. It should be
noted that the number of cycles (or iterations) 𝜂 that are performed

https://github.com/oberlan/bromro2
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Algorithm 1: Forward-Looking Approach
Input: Let 𝛿ini ∈ (0, 1), 𝜎 ∈ (0, 1), and 𝜖 > 0 be given algorithmic parameters. Let 𝑝, 𝑃 , 𝑚𝜅 , 𝑛𝜅 , 𝑊𝜅,𝑗 , 𝐻𝜅,𝑗 , 𝑐𝜅,𝑗 , 𝑤𝜅,𝑖, ℎ𝜅,𝑖 (𝜅 = 𝑝,… , 𝑃 − 1,

𝑗 = 1,… , 𝑚𝜅 , 𝑖 = 1,… , 𝑛𝜅), 𝑑, 𝑤̄𝑖, ℎ̄𝑖 (𝑖 = 1,… , 𝑑), and 𝜉 be given data describing an instance of the multi-period problem
Output: A solution to the multi-period problem (𝑝, 𝑃 )

1 𝜂 ← 0 // set the cycles’ counter
// initialize the estimated utilization rates of the first-order leftovers of all periods

2 𝛿𝜂𝜅,2𝑗−1 ← 𝛿ini and 𝛿𝜂𝜅,2𝑗 ← 𝛿ini (𝜅 = 𝑝,… , 𝑃 − 1, 𝑗 = 1,… , 𝑚𝜅)
3 repeat

// set first-period objects’ number and dimensions (all of them are purchasable objects)
4 Set 𝑚̄𝑝 ← 𝑚𝑝 and 𝑊̄𝑝𝑗 ← 𝑊𝑝𝑗 and 𝐻̄𝑝𝑗 ← 𝐻𝑝𝑗 (𝑗 = 1,… , 𝑚𝑝)
5 𝑒𝑝𝑗 ← 𝜉 (𝑗 = 1,… , 𝑚𝑝) // initialize their validity
6 for 𝜅 = 𝑝,… , 𝑃 − 1 do
7 Solve (𝛿𝜂 ; 𝜅, 𝜅 + 1) // solve the 𝜅th single-period subproblem

// for each item produced in the period
8 for 𝑖 = 1,… , 𝑛𝜅 do

// set 𝑗 as the index of the object 𝜅𝑗 to which item 𝜅𝑖 was assigned
9 Let 𝑗 be the only index for which 𝑣𝜅𝑖𝑗 = 1

// if the object is a leftover
10 if 𝑗 > 𝑚𝜅 then

// add the item’s area to the used area of the leftover’s first-order ancestor
11 According to (31), update the used area of the leftover’s first-order ancestor

12 Compute 𝑚̂𝜅 and 𝑗1 ≤ 𝑗2 ≤ ⋯ ≤ 𝑗𝑚̂𝜅
such that 𝑒𝜅,𝑗𝑘 > 0 // objects generating leftovers

// process the leftovers to be used in forthcoming periods
13 for 𝑘 = 1,… , 𝑚̂𝜅 do

// leftovers of object 𝜅,𝑗𝑘 are named 𝜅+1,𝑚𝜅+1+2𝑘−1 and 𝜅+1,𝑚𝜅+1+2𝑘

14 if 𝑗𝑘 ≤ 𝑚𝜅 then
// leftovers are first-order (produced from a purchasable object)

15 According to (27), (28), (29), for the two first-order leftovers of object 𝜅,𝑗𝑘 , compute their area, initialize with zero their
used area, and set their common ancestor

16 else
// leftovers are high-order (leftovers of leftovers)

17 According to (30), set their common ancestor
// set the two leftovers’ validity as their common ancestors’ validity reduced by one

18 Let (𝜈, 𝜁) = 𝑜𝜅+1,𝑚𝜅+1+2𝑘. Set 𝑒𝜅+1,𝑚𝜅+1+2𝑘−1 ← 𝑒𝜈,𝜁 − 1 and 𝑒𝜅+1,𝑚𝜅+1+2𝑘 ← 𝑒𝜈,𝜁 − 1

// set next-period objects’ number and dimensions (purchasable objects and leftovers)
19 Set 𝑚̄𝜅+1 ← 𝑚𝜅+1 + 2𝑚̂𝑘, 𝑊̄𝜅+1,𝑗 ← 𝑊𝜅+1,𝑗 and 𝐻̄𝜅+1,𝑗 ← 𝐻𝜅+1,𝑗 (𝑗 = 1,… , 𝑚𝜅+1), and, following constraint (11), set the dimensions

𝑊̄𝜅+1,𝑗 and 𝐻̄𝜅+1,𝑗 (𝑗 = 𝑚𝜅+1 + 1,… , 𝑚̄𝜅+1) as the dimensions of the corresponding leftovers
20 𝑒𝜅+1,𝑗 ← 𝜉 (𝑗 = 1,… , 𝑚𝜅+1) // initialize the next-period purchasable objects’ validity

// compute the first-order leftovers’ actual utilization rate of the cycle and update their estimated
utilization rate

21 for 𝜅 = 𝑝,… , 𝑃 − 1 do
22 for 𝑗 = 1,… , 𝑚𝜅 do
23 According to (32), (25), compute 𝑓 𝜂

𝜅,2𝑗−1 and 𝑓 𝜂
𝜅,2𝑗 and then compute 𝛿𝜂+1𝜅,2𝑗−1 and 𝛿𝜂+1𝜅,2𝑗

24 Check the stopping criterion (26) and, if does not hold, update the cycles’ counter 𝜂 ← 𝜂 + 1
25 until stopping criterion (26) holds
26 return the computed solution to the multi-period problem (𝑝, 𝑃 ) as the composition of the solutions to the single-period subproblems

(𝛿𝜂 ; 𝜅, 𝜅 + 1) for 𝜅 = 𝑝,… , 𝑃 − 1
until the satisfaction of the stopping rule (26) depends on 𝛿ini and 𝜎.
Fig. 7 (middle and bottom) displays the average number of cycles 𝜂
and the average elapsed CPU time in seconds, as a function of 𝛿ini
and 𝜎. On the one hand, the CPU time has a low dependence on 𝜎
and, roughly speaking, is an increasing function of 𝛿ini. On the other
hand, the number of cycles has a low dependence on 𝛿ini and increases
as 𝜎 increases. Note that, when 𝜎 = 1, the rule (25) reduces to, at
ach cycle, discarding information of previous cycles and defining the
tilization fraction as the actual utilization fraction of the cycle. In this
ase, the stopping rule (26) is satisfied if and only if the utilization rates
f all objects are the same for two consecutive cycles. Fig. 7 shows that,
ctually, this phenomenon occur; but it produces a premature stopping
ith lower quality solutions. Anyway, regardless of the metrics related
10
to computational cost, based on the quality of the solutions obtained,
we selected (𝛿ini, 𝜎) = (0.9, 0.9) for the rest of the experiments.

Fig. 8 shows the data of Fig. 7 (top and middle) in a different
way. Using bi-objective optimization concepts, it illustrates the Pareto
frontier for the (𝛿ini, 𝜎) pairs using as conflicting objectives the computa-
tional effort (CPU time) and the result obtained (gap). The figure shows
all pairs (𝛿ini, 𝜎) considered, with 𝛿ini and 𝜎 ∈ {0.50, 0.55,… , 1.00}.
Each point is represented by a small ball such that, the outer color
corresponds to 𝛿ini and the inner color corresponds to 𝜎. The figure
clearly shows that, by choosing (𝛿ini, 𝜎) = (0.90, 0.90), we sacrifice
performance and opt for the combination that delivers the best results
with a high computational cost. The figure also clearly shows that,
by sacrificing the quality of the solution found, it is still possible to
find good quality solutions for much less time. For example, the pair
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Fig. 7. Average gap (to optimal solution computed with CPLEX), CPU time (in seconds), and number of cycles of the forward-looking approach for variations of its parameters 𝛿ini
nd 𝜎.
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𝛿ini, 𝜎) = (0.75, 1.00) manages to find solutions with very little loss of
uality (the gap increases from 7.57% to 8.52%) with a two-thirds
eduction in time. A four-fifths reduction in time can be obtained if
olutions with a gap of 18.54% are satisfactory or if CPU time is a
imiting factor.

.2. Forward-looking versus myopic approach

In a second set of experiments, we compare the introduced forward-
ooking approach with (𝛿ini, 𝜎) = (0.9, 0.9) against the myopic approach,
hat only differs with the forward-looking approach in the objective
unction that is minimized in each subproblem. In this comparison,

new set of thirty instances with four, eight, and twelve periods,
en of each type, is considered. Instances were generated with the
andom generator introduced in Birgin et al. (2020). All instances,
arger than the ones considered in Birgin et al. (2020), have up to 5
bjects and up to 15 items per period. For the cases with four periods
e consider instances with 𝜉 ∈ {1, 2, 3, 4} and for the cases with
ight and twelve periods we consider 𝜉 ∈ {1, 2, 3, 4, 𝑃 }, totalizing 140
nstances. Experiments that will be shown in the following sections
how that CPLEX with a CPU time limit of two hours was able to
ind a guaranteed optimal solution in only 15 of the 140 instances. In
rder to allow reproducibility, a table describing each instance is given
n Appendix. Table 1 shows the number of binary variables, continuous
ariables, and constraints of each instance. Note that instances with
11
twelve periods and 𝜉 = 𝑃 have around 400,000 binary variables, 300,000
ontinuous variables, and 4,000,000 constraints.

Tables 2–6 show the results. The tables show, for the myopic
nd the forward-looking approaches, the best objective function value
ound (i.e. the value of (3)), the corresponding cost of the purchased
bjects, the corresponding value of the leftovers at the final instant of
he time horizon, and the CPU time in seconds. In addition, for the
orward-looking approach, tables show the gap given by

00
(𝐹f look − 𝐹myopic

𝐹myopic

)

%, (34)

where 𝐹f look is the best objective function value found by the forward-
looking approach and 𝐹myopic is the best objective function value found
by the myopic approach. It is important to notice that, by definition,
the objective function (3) is dominated by the objects’ cost (which is
multiplied by an upper bound on the value of the leftovers at the last
time instant); while the value of the leftovers at the last time instant
plays a ‘‘tie-breaking role’’. Thus, a tiny gap may represent a situation
where both methods have found a solution with the same cost of the
objects but with a relevant difference in the value of the leftovers at
instant 𝑃 . Also note that Tables 2–6 do not include averages in the
columns corresponding to the leftovers values. This is because, in the
considered problem, the main goal is to find a solution that minimizes
the overall cost of the objects and, among solutions with minimum
costs of the objects, a solution that maximizes the value of the leftovers
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Fig. 8. Each pair 𝑝 = (𝛿ini , 𝜎) is associated with an average CPU time 𝑡(𝑝) and an average gap 𝑔(𝑝). We say that a pair 𝑝 is dominated if there exists another pair 𝑞 such (a) 𝑡(𝑞) < 𝑡(𝑝)
nd 𝑔(𝑞) ≤ 𝑔(𝑝) or (b) 𝑡(𝑞) ≤ 𝑡(𝑝) and 𝑔(𝑞) < 𝑔(𝑝). This image highlights the non-dominated pairs.
Table 1
Number of binary variables (BV), continuous variables (CV), and constraints (CO) of the thirty considered instances.

Inst. 𝜉 = 1 𝜉 = 2 𝜉 = 3 𝜉 = 4 𝜉 = 𝑃

BV CV CO BV CV CO BV CV CO BV CV CO BV CV CO

4
pe

rio
ds

1 369 150 2,664 609 294 5,688 897 518 8,168 1,185 838 9,352
2 270 150 1,683 498 310 3,787 786 566 5,555 1,218 1,046 7,331
3 298 176 1,854 450 304 3,122 626 496 4,074 754 656 4,634
4 397 152 2,649 529 240 3,805 721 384 5,205 1,041 704 6,453 Since instances from 1
5 487 150 3,752 695 254 6,932 951 430 9,396 1,335 910 11,076 to 10 have 𝑃 = 4 periods,
6 290 202 1,809 546 402 3,845 898 754 5,757 1,042 914 6,349 the case 𝜉 = 𝑃 coincides
7 572 214 4,443 844 358 8,667 1,164 630 11,683 1,308 790 12,275 with the case 𝜉 = 4.
8 503 154 3,328 675 282 5,456 979 426 11,560 1,235 746 12,680
9 318 196 2,044 538 380 3,672 706 556 4,520 1,138 1,036 6,296
10 345 162 2,072 525 290 3,584 749 434 5,784 1,069 754 7,032

8
pe

rio
ds

11 1,028 444 9,014 1,848 868 19,982 3,368 1,668 40,422 5,672 2,820 70,806 28,904 21,764 265,142
12 1,116 394 9,701 1,872 754 20,881 3,040 1,378 35,801 4,848 2,338 58,953 30,096 19,874 324,841
13 593 362 3,824 1,105 722 8,004 1,889 1,298 14,092 3,281 2,418 22,780 20,625 16,818 113,308
14 921 374 7,804 1,609 734 17,444 2,721 1,358 32,308 4,673 2,414 60,884 23,297 18,286 238,260
15 986 390 8,311 1,702 742 17,911 2,982 1,430 33,255 5,334 2,710 62,487 25,910 17,558 228,343
16 974 408 7,886 1,782 840 19,586 2,982 1,528 36,114 5,174 2,616 69,122 31,094 26,168 257,986
17 1,251 394 10,836 2,071 714 26,772 3,455 1,386 50,388 5,631 2,282 91,972 27,359 16,362 432,452
18 839 380 6,413 1,467 756 13,393 2,483 1,460 23,449 3,859 2,420 36,057 18,547 15,924 130,777
19 1,020 400 8,012 1,660 720 16,656 2,780 1,296 31,432 4,620 2,320 53,288 22,956 17,488 202,888
20 1,141 414 10,206 1,825 774 19,074 2,977 1,350 34,826 5,089 2,374 66,490 30,401 19,334 377,914

12
pe

rio
ds

21 1,184 514 8,941 2,056 978 19,957 3,728 1,842 42,077 6,784 3,442 82,925 343,904 246,834 3,855,917
22 1,559 576 13,531 2,595 1,080 29,079 4,483 1,944 58,567 7,827 3,544 108,343 307,763 248,728 2,474,167
23 1,158 530 8,965 2,066 1,050 19,405 3,794 1,994 40,397 6,626 3,594 73,149 326,178 295,370 2,276,765
24 1,258 562 9,857 2,198 1,058 21,645 3,838 1,986 40,837 7,086 3,714 81,909 370,446 314,050 2,672,821
25 1,443 584 12,671 2,403 1,096 25,275 4,283 2,104 50,827 7,387 3,928 88,299 359,931 319,320 2,927,211
26 1,230 524 9,706 2,218 1,028 22,226 3,970 1,892 44,954 7,202 3,588 83,226 395,682 263,684 3,072,506
27 1,452 558 11,777 2,480 1,054 26,525 4,472 2,030 56,773 7,928 3,790 108,821 482,392 405,326 4,270,261
28 1,587 546 13,404 2,567 1,010 28,464 4,471 1,874 59,328 8,135 3,570 119,344 417,927 269,042 5,343,952
29 1,488 656 12,636 2,596 1,224 27,628 4,588 2,264 54,436 8,300 4,152 106,004 480,652 339,576 6,202,740
30 1,299 630 10,782 2,363 1,198 24,670 4,259 2,238 49,086 7,315 4,126 82,830 435,731 336,414 4,289,870
at instant 𝑃 . Thus, it makes no sense to compare the value of the
leftovers at instant 𝑃 of solutions with different objects cost. It would
be very easy to construct a solution with high objects cost and plenty of
leftovers at the end of the considered time horizon. Given two solutions,
the one with lower objects cost is better than the other; and in case the
objects cost is identical, the one with the higher value of the leftovers at
instant 𝑃 is preferable. Solutions must be compared with this objective
n mind; so the gaps must be examined carefully.
12
From what was recalled in the previous paragraph, by the definition
of the problem, to win means to find a solution with strictly lower cost
of the objects or with equal cost of the objects and strictly higher value
of the leftovers at instant 𝑃 . To tie means to find a solution with the
same cost of the objects and the same value of the leftovers at instant 𝑃 .
If the method does not win or does not tie, then it loses. In Tables 2–6,
values in bold correspond to the cases in which the method wins or ties.
Table 7 summarizes the results. Each cell of the table is of the form
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Table 2
Myopic approach versus forward-looking approach considering the scenario with smallest possible use of leftovers, i.e. 𝜉 = 1.

Inst. Myopic approach Forward-looking approach

Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

4
pe

rio
ds

1 314,108,050 9,155 0 60.3 400,703,843 11,679 2,647 681.1 27.5688
2 187,422,365 6,715 0 32.3 187,422,365 6,715 0 101.0 0.0000
3 340,487,089 8,951 0 4.0 340,487,089 8,951 0 266.7 0.0000
4 309,586,584 9,677 0 1.4 309,586,584 9,677 0 665.6 0.0000
5 444,536,794 15,954 5,462 60.3 182,258,424 6,541 0 1,443.0 −59.0004
6 236,240,392 6,246 2,066 0.3 148,039,222 3,914 0 157.4 −37.3353
7 607,520,858 13,433 0 16.4 607,520,858 13,433 0 664.3 0.0000
8 241,124,382 12,191 1,407 97.6 191,042,687 9,659 2,674 1,927.3 −20.7701
9 226,123,995 4,757 0 0.8 226,123,995 4,757 0 257.8 0.0000

10 354,815,285 10,884 3,115 9.2 354,815,285 10,884 3,115 287.4 0.0000

Avg. 326,196,579 9,796 28.3 294,800,035 8,621 645.2 −8.9537

8
pe

rio
ds

11 1,550,317,180 16,165 3,310 180.4 1,405,404,040 14,654 2,484 3,136.5 −9.3473
12 1,625,463,920 17,980 0 105.5 1,764,776,484 19,521 0 2,894.0 8.5706
13 1,102,076,378 11,453 0 0.7 1,102,076,378 11,453 0 660.7 0.0000
14 1,423,459,632 16,701 0 19.2 1,360,217,488 15,959 0 2,113.5 −4.4428
15 1,156,701,480 15,396 0 160.0 1,110,797,050 14,785 0 3,136.7 −3.9686
16 1,037,649,354 12,633 0 165.0 1,261,472,894 15,358 2,510 4,420.4 21.5702
17 1,236,188,630 17,285 0 125.1 1,236,188,630 17,285 0 3,102.0 0.0000
18 1,271,449,952 15,649 0 61.7 1,234,400,864 15,193 0 2,565.4 −2.9139
19 1,489,848,521 17,883 2,092 126.1 1,559,998,475 18,725 0 1,814.8 4.7085
20 1,464,089,337 17,855 2,808 63.9 1,555,845,650 18,974 3,376 2,084.8 6.2671

Avg. 1,335,724,438 15,683 104.8 1,337,259,145 15,881 2,649.3 1.5752

12
pe

rio
ds

21 2,905,035,501 22,879 2,645 61.3 3,088,894,153 24,327 2,345 2,152.5 6.3290
22 2,526,326,584 22,230 1,766 181.7 2,777,141,099 24,437 1,766 2,772.5 9.9280
23 2,554,150,135 21,909 1,085 64.9 2,755,018,560 23,632 0 2,594.0 7.8644
24 2,745,092,742 23,139 2,523 74.1 2,830,037,925 23,855 0 2,670.6 3.0944
25 3,911,466,834 28,039 1,705 137.3 3,423,912,544 24,544 0 3,149.7 −12.4647
26 3,966,384,615 27,042 735 124.9 4,586,379,445 31,269 1,130 2,847.6 15.6312
27 3,462,474,633 26,709 0 241.0 3,674,042,217 28,341 0 3,034.6 6.1103
28 3,134,068,124 28,791 4,972 161.8 2,781,161,944 25,549 0 3,625.9 −11.2603
29 2,682,280,094 19,795 1,791 136.3 2,872,390,812 21,198 1,782 4,662.7 7.0877
30 3,821,604,621 24,685 3,654 182.4 3,730,110,699 24,094 1,911 3,403.1 −2.3941

Avg. 3,170,888,388 24,522 136.6 3,251,908,940 25,125 3,091.3 2.9926

Avg. 1,610,936,469 16,739 88.5 1,635,275,590 16,645 2,109.8 −1.3056
b
f

‘‘W/T/L G(%)’’, i.e. for each combination of number of periods 𝑃 ∈
{4, 8, 12} and parameter 𝜉 ∈ {1, 2, 3, 4, 𝑃 } (comprising 10 instances), it
displays the number of instances in which the forward-looking strategy
wins, ties, and looses (with respect to the myopic approach), and the
average gap given by (34). Figures in the table shows that, the larger
the chance of taking advantage of leftovers (i.e. the larger 𝜉), the larger
the number of victories and the larger the gap. This fact is graphically
evidenced in Fig. 9. Clearly, the way to estimate the future impact of
current decisions is heuristic in nature. This fact, associated with an
instance in which there is little chance of using leftovers from previous
periods (small 𝜉) occasionally leads the myopic method to obtain better
results. This is an expected behavior that does not diminish the value
of the proposed method. In the case 𝜉 = 𝑃 , which is the extreme case of
the type of instances for which the method was developed, the forward
looking approach find better solutions in all instances but one, with an
average gap of, approximately, −15%.

4.3. Assessing the quality of small instances’ solutions

In the previous section, numerical experiments made clear that the
forward-looking approach outperforms the myopic approach; and the
greater the possibility of saving raw material by employing leftovers
(i.e. the larger the parameter 𝜉), the greater the advantage of the
method. Since both methods differ in the looking-ahead objective func-
tion being minimized at each period, it is clear that this characteristic
is well succeeded in that which it is intended to accomplish. On the
other hand, we know nothing about how far from the optimal solution
are the solutions that the method finds. In this section we perform
13
an experiment comparing the solutions found by the forward-looking
approach with the solutions found with CPLEX.

We consider in this experiment the ten instances with four periods
and 𝜉 ∈ {1, 2, 3, 4}. These problems, i.e. the corresponding multi-period
models (𝑝, 𝑃 ), were solved with CPLEX, considering a time limit of
two hours. The left-hand side of Table 8 shows the results. The table
shows the ceiling of the best lower bound, the best objective function
value found, the relative gap (33), and the CPU time in seconds. In
addition, Since the value of the objective function (3) mixes the cost of
the objects and the value of the leftovers at instant 𝑃 and, thus, it is not
very informative by itself, the table shows the cost of the objects and the
value of the leftovers associated with each solution found. The right-
hand side of the table gathers, from Tables 2–5, the results obtained
by the forward-looking approach. In the right-hand side of the table,
‘‘gap(%)’’ represents the relative gap between the solutions found by
both methods, computed as

100
(𝐹f look − 𝐹cplex

𝐹cplex

)

%, (35)

where 𝐹f look is the best objective function value found by the forward-
looking approach and 𝐹cplex is the best objective function value found
y CPLEX. The table shows that, within the imposed CPU time limit,
or 𝜉 = 1, 2, 3, 4, CPLEX closed the gap in 7, 4, 4, and 0 instances (out

of 10) respectively; while the average gap (35) between CPLEX and
the forward-looking approach was 8.9%, 16.5%, 0.8%, and −7.6%. For
the instances with 𝜉 = 1, the forward-looking approach matched the
solution found by CPLEX in 5 cases of which 4 are known to be optimal;
and none solution was improved. For the instances with 𝜉 = 2, the
forward-looking approach matched 1 solution and improved other 2
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Table 3
Myopic approach versus forward-looking approach considering the scenario with low use of leftovers, i.e. 𝜉 = 2.

Inst. Myopic approach Forward-looking approach

Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

4
pe

rio
ds

1 300,655,883 8,763 2,647 0.9 300,655,883 8,763 2,647 1,190.8 0.0000
2 183,066,191 6,559 2,058 0.8 187,421,443 6,715 922 557.7 2.3791
3 340,482,337 8,951 4,752 63.4 339,152,364 8,916 3,360 481.9 −0.3906
4 309,582,278 9,677 4,306 77.0 277,209,196 8,665 1,484 808.8 −10.4570
5 274,293,216 9,844 0 120.1 182,257,683 6,541 741 1,446.4 −33.5537
6 181,132,639 4,789 1,708 2.5 179,167,551 4,737 0 270.3 −1.0849
7 527,061,892 11,654 1,912 134.2 634,518,412 14,030 2,368 1,633.8 20.3878
8 166,697,412 8,428 0 38.0 166,697,412 8,428 0 913.2 0.0000
9 226,123,365 4,757 630 7.6 226,122,767 4,757 1,228 458.4 −0.0003

10 284,400,266 8,724 2,134 61.5 284,400,266 8,724 2,134 551.8 0.0000

Avg. 279,349,548 8,215 5 50.6 277,760,298 8,028 831.3 −2.2720

8
pe

rio
ds

11 1,425,351,269 14,862 3,703 246.6 1,383,057,725 14,421 2,701 2,353.0 −2.9672
12 1,492,298,384 16,507 444 301.6 1,344,578,692 14,873 0 3,650.4 −9.8988
13 1,041,838,902 10,827 0 6.1 741,805,859 7,709 375 1,004.0 −28.7984
14 1,151,398,287 13,509 801 55.3 1,253,506,060 14,707 964 2,746.1 8.8682
15 1,190,883,867 15,851 1,763 138.1 1,104,410,088 14,700 912 3,563.9 −7.2613
16 1,037,649,024 12,633 330 162.1 1,205,374,215 14,675 935 4,293.6 16.1640
17 1,137,778,191 15,909 1,671 190.4 1,153,013,196 16,122 0 7,001.8 1.3390
18 1,203,279,118 14,810 3,762 109.9 1,025,673,954 12,624 798 4,781.4 −14.7601
19 1,111,449,959 13,341 2,092 194.0 1,183,682,688 14,208 0 4,432.4 6.4990
20 1,282,624,633 15,642 3,725 127.1 1,386,189,384 16,905 3,711 4,830.0 8.0744

Avg. 1,207,455,163 14,389 153.1 1,178,129,186 14,094 3,865.7 −2.2741

12
pe

rio
ds

21 2,573,632,748 20,269 3,258 137.9 2,737,557,920 21,560 1,520 4,216.8 6.3694
22 2,286,762,128 20,122 2,562 269.2 2,415,976,613 21,259 2,442 3,767.1 5.6505
23 2,324,372,040 19,938 0 234.3 2,297,208,522 19,705 378 6,005.3 −1.1686
24 2,704,400,499 22,796 2,961 175.5 2,623,019,850 22,110 0 3,472.1 −3.0092
25 3,755,224,476 26,919 2,943 190.0 3,016,011,620 21,620 0 5,557.5 −19.6849
26 3,384,818,287 23,077 688 141.9 2,863,535,290 19,523 735 4,755.6 −15.4006
27 2,952,610,016 22,776 2,296 309.1 3,082,376,653 23,777 2,296 7,569.5 4.3950
28 2,991,904,474 27,485 2,686 237.9 2,525,893,589 23,204 1,035 3,854.2 −15.5757
29 2,369,810,439 17,489 1,528 246.4 2,572,795,215 18,987 246 6,220.1 8.5654
30 3,189,962,135 20,605 940 181.1 2,682,942,759 17,330 1,191 5,680.2 −15.8942

Avg. 2,853,349,724 22,148 212.3 2,681,731,803 20,908 5,109.8 −4.5753

Avg. 1,446,718,145 14,917 138.7 1,379,207,096 14,343 3,268.9 −3.0405
Fig. 9. Number of best solutions (including ties) found by the myopic and the forward-looking approaches as a function of the number of periods and the expiration date of the
usable leftovers.
solutions. For the instances with 𝜉 = 3, the forward-looking approach
matched 2 solutions (known to be optimal) and improved other 3. For
the instances with 𝜉 = 4, the forward-looking approach improved 3
solutions found by CPLEX.
14
First of all, we should note that in this experiment we are consider-
ing instances with only four periods, which correspond to the smallest
instances being considered in this work. Within this set, the cases in
which CPLEX wins are concentrated in the instances with 𝜉 = 1, 2,
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Table 4
Myopic approach versus forward-looking approach considering the scenario with medium use of leftovers, i.e. 𝜉 = 3.

Inst. Myopic approach Forward-looking approach

Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

4
pe

rio
ds

1 177,005,290 5,159 0 60.6 277,051,660 8,075 1,590 922.0 56.5217
2 183,066,047 6,559 2,202 2.7 170,926,810 6,124 154 355.7 −6.6311
3 340,482,702 8,951 4,387 63.7 205,638,144 5,406 690 306.6 −39.6039
4 309,582,332 9,677 4,252 122.0 187,633,080 5,865 0 808.2 −39.3915
5 274,289,426 9,844 3,790 120.6 182,257,479 6,541 945 2,669.0 −33.5529
6 181,132,281 4,789 2,066 2.4 92,931,111 2,457 0 160.1 −48.6943
7 352,310,540 7,790 0 136.3 459,767,078 10,166 438 832.0 30.5005
8 166,694,832 8,428 2,580 97.4 143,119,673 7,236 1,171 2,679.7 −14.1427
9 226,122,641 4,757 1,354 9.1 226,122,641 4,757 1,354 347.7 0.0000

10 178,974,000 5,490 0 65.4 178,974,000 5,490 0 314.8 0.0000

Avg. 238,966,009 7,144 68.0 212,442,168 6,212 939.6 −9.4994

8
pe

rio
ds

11 1,231,334,604 12,839 2,530 152.9 1,165,832,300 12,156 1,036 3,028.8 −5.3196
12 1,555,759,878 17,209 2,558 303.9 1,508,749,798 16,689 2,558 3,621.5 −3.0217
13 920,593,767 9,567 375 52.9 974,574,373 10,128 2,555 1,260.2 5.8637
14 1,019,203,389 11,958 867 52.1 1,035,823,553 12,153 943 4,147.4 1.6307
15 1,190,882,686 15,851 2,944 256.4 1,048,738,758 13,959 912 4,068.5 −11.9360
16 1,210,381,894 14,736 3,674 144.5 1,142,537,743 13,910 1,837 3,256.4 −5.6052
17 1,292,683,746 18,075 4,104 243.8 1,126,765,124 15,755 966 3,305.4 −12.8352
18 911,276,358 11,216 1,210 175.0 1,025,673,954 12,624 798 4,028.9 12.5536
19 1,111,449,683 13,341 2,368 208.1 1,008,394,414 12,104 1,930 4,102.8 −9.2721
20 1,218,090,995 14,855 4,150 242.8 1,066,068,178 13,001 821 3,603.0 −12.4804

Avg. 1,166,165,700 13,965 183.2 1,110,315,820 13,248 3,442.3 −4.0422

12
pe

rio
ds

21 2,289,085,834 18,028 1,438 176.7 2,340,384,768 18,432 0 4,697.8 2.2410
22 2,073,905,839 18,249 1,766 199.9 2,106,634,923 18,537 2,442 8,231.9 1.5781
23 2,093,542,769 17,958 871 182.5 2,032,571,215 17,435 1,085 7,165.9 −2.9124
24 2,704,399,467 22,796 3,993 194.1 2,374,002,708 20,011 2,277 2,767.2 −12.2170
25 3,374,945,006 24,193 2,687 212.8 2,891,294,796 20,726 2,930 3,949.7 −14.3306
26 2,790,050,551 19,022 1,299 194.4 2,929,979,126 19,976 674 3,723.2 5.0153
27 2,907,754,654 22,430 3,256 320.6 3,085,098,730 23,798 2,596 5,565.1 6.0990
28 2,947,923,296 27,081 6,040 342.2 2,649,225,201 24,337 3,271 3,963.2 −10.1325
29 2,280,785,228 16,832 1,268 249.2 2,174,821,959 16,050 1,191 7,355.1 −4.6459
30 2,677,059,585 17,292 1,395 245.4 2,338,635,390 15,106 0 3,055.4 −12.6416

Avg. 2,613,945,223 20,388 231.8 2,492,264,882 19,441 5,047.4 −4.1947

Avg. 1,339,692,311 13,832 161.0 1,271,674,290 12,967 3,143.1 −5.9121
d
t
p
b
s
u
e
f

m
w
t
w
t
m
m
w
e
t
c
a
o
m
t
t
o
i
o

which correspond to the smallest instances and to the instances in
which there is little space to exploit leftovers. It is not expected the
proposed method to be advantageous when the instance is so small
that it can be solved optimally using CPLEX. On the other hand, the
numbers show that (a) the proposed method finds solutions close to
the optimal solutions when the optimal solutions are known and that,
(b) even considering instances with as few as four periods, the larger
the 𝜉, the greater the advantage of using the proposed method.

To corroborate the statements of the previous paragraph, we also
xperimented running CPLEX in the 20 most difficult instances, with
and 12 periods and 𝜉 ∈ {4, 𝑃 }. Table 9 shows the results. In 7

out of the 20 instances with 𝜉 = 4, CPLEX failed to find a feasible
solution; while it was able to find a feasible solution in the other 13
instances. However, the forward-looking approach found better results
in all these 13 instances, with an average gap of −33.14%. Out of a
total of 20 instances with 𝜉 = 𝑃 , CPLEX found a feasible solution in
nly 2 instances; and in these two cases the forward-looking approach
ound better solutions, with an average gap of −80.68%.

4.4. Discussion concerning computational cost, parallelism and further de-
velopments

This paper presents the first solution method reported in the lit-
erature to solve the multi-period cutting stock problem with usable
leftovers introduced in Birgin et al. (2020). Being the first one, the
numerical experiments of this work focused on getting good quality
solutions, thinking of building a set of problems and solutions that
could later be used as a benchmark for subsequent developments. This
decision was evidenced in the choice of the parameters of the proposed
15
method in Section 4.1: a small value for the parameter 𝜖, which is
irectly related to the number of iterations of the method (the lower
he 𝜖 the more iterations the method makes) and the choice of the
arameters (𝛿ini, 𝜎), where we chose the combination that produced the
est results at a high computational cost. However, the analysis of Fig. 8
howed that we can obtain results with essentially the same quality
sing one third of the computational effort and that if computational
ffort is a major constraint, we can still find good solutions in up to one
ifth of the computational time.

The introduced method was compared in Section 4.2 with a myopic
ethod and in Section 4.3 with the solutions found by an exact method
ith time limitation. The proposed method found better solutions

han the myopic method, especially in the situations for which it
as developed, i.e., instances in which there are many opportunities

o take advantage of leftovers. However, the comparison with the
yopic method can be considered unfair, considering that the proposed
ethod uses more time than the myopic method. In this respect, it is
orth remembering that we chose parameters that make the method
xpensive, and that solutions of similar quality could be found in a
hird of the time. Limiting the time of the proposed method to be
lose to the time used by the myopic method would be unreasonable
s it would annihilate its potential advantages. The two methods are
f the rolling horizon type, with the only difference being that the
yopic method takes the best greedy decision at each instant while

he proposed method has a vision of the future that is adjusted over
ime. Imposing on the proposed method a time limit equal to the time
f the myopic method would be the same as allowing it to make a single
teration. In that single iteration, the initial estimate of the utilization
f the leftovers would be used and the final solution would be totally
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Table 5
Myopic approach versus forward-looking approach considering the scenario with high use of leftovers, i.e. 𝜉 = 4.

Inst. Myopic approach Forward-looking approach

Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

4
pe

rio
ds

1 177,003,277 5,159 2,013 68.7 277,048,333 8,075 4,917 1,110.1 56.5216
2 183,066,038 6,559 2,211 2.8 170,926,618 6,124 346 331.7 −6.6312
3 340,482,702 8,951 4,387 63.6 205,637,682 5,406 1,152 304.6 −39.6041
4 309,582,269 9,677 4,315 122.0 187,632,447 5,865 633 1,510.7 −39.3917
5 274,288,892 9,844 4,324 180.1 182,257,683 6,541 741 1,513.6 −33.5527
6 181,131,635 4,789 2,712 2.6 92,930,802 2,457 309 248.2 −48.6943
7 352,308,306 7,790 2,234 194.4 459,763,070 10,166 4,446 1,421.0 30.5002
8 166,694,832 8,428 2,580 97.7 143,119,381 7,236 1,463 3,001.7 −14.1429
9 226,122,426 4,757 1,569 9.1 226,122,426 4,757 1,569 394.3 0.0000

10 178,973,172 5,490 828 65.6 178,972,994 5,490 1,006 514.3 −0.0001

Avg. 238,965,355 7,144 80.7 212,441,144 6,212 1,035.0 −9.4995

8
pe

rio
ds

11 1,173,599,085 12,237 2,637 80.9 1,045,086,574 10,897 1,108 3,000.9 −10.9503
12 1,555,759,725 17,209 2,711 307.3 1,283,103,972 14,193 0 5,231.0 −17.5256
13 1,006,137,497 10,456 1,559 61.0 594,580,454 6,179 0 1,498.7 −40.9047
14 1,019,202,506 11,958 1,750 211.2 1,034,033,507 12,132 1,117 4,999.5 1.4552
15 1,190,882,363 15,851 3,267 187.3 901,935,429 12,005 221 4,162.6 −24.2633
16 1,210,381,894 14,736 3,674 202.0 1,036,005,844 12,613 750 3,397.7 −14.4067
17 1,137,777,475 15,909 2,387 289.3 1,083,925,806 15,156 1,002 8,488.7 −4.7331
18 1,203,278,753 14,810 4,127 188.6 925,901,698 11,396 510 4,619.3 −23.0518
19 1,111,449,235 13,341 2,816 208.9 1,026,389,411 12,320 2,109 6,673.1 −7.6531
20 1,282,623,747 15,642 4,611 309.6 1,151,100,925 14,038 1,037 4,336.0 −10.2542

Avg. 1,189,109,228 14,215 204.6 1,008,206,362 12,093 4,640.7 −15.2287

12
pe

rio
ds

21 2,359,046,839 18,579 3,107 231.3 2,248,327,065 17,707 1,553 3,668.8 −4.6934
22 1,813,887,845 15,961 0 219.4 1,876,619,885 16,513 0 5,023.8 3.4584
23 2,061,483,504 17,683 636 228.8 2,000,862,162 17,163 378 6,223.4 −2.9407
24 2,301,874,270 19,403 635 190.7 2,448,388,251 20,638 879 2,789.5 6.3650
25 2,981,413,301 21,372 2,071 144.9 2,704,226,259 19,385 626 3,955.0 −9.2972
26 2,929,977,951 19,976 1,849 255.4 2,499,194,368 17,039 957 4,805.9 −14.7026
27 2,698,521,316 20,816 2,476 251.6 2,912,940,914 22,470 2,476 5,023.6 7.9458
28 2,792,803,496 25,656 6,040 343.9 2,569,542,877 23,605 3,003 5,369.5 −7.9941
29 2,491,626,343 18,388 2,821 194.7 2,156,800,182 15,917 1,069 6,318.9 −13.4381
30 2,677,058,625 17,292 2,355 254.6 2,225,775,255 14,377 0 4,611.4 −16.8574

Avg. 2,510,769,349 19,513 231.5 2,364,267,722 18,481 4,779.0 −5.2154

Avg. 1,312,947,977 13,624 172.3 1,194,971,742 12,262 3,484.9 −9.9812
Table 6
Myopic approach versus forward-looking approach considering the scenario with unrestricted use of leftovers, i.e. 𝜉 = 𝑃 .

Inst. Myopic approach Forward-looking approach

Best objective Objects Leftovers CPU Best objective Objects Leftovers CPU gap (%)
function value cost value time function value cost value time

8
pe

rio
ds

11 1,215,891,809 12,678 4,459 192.3 986,583,007 10,287 2,015 3,695.6 −18.8593
12 1,555,758,322 17,209 4,114 306.8 1,328,123,427 14,691 1,737 3,980.1 −14.6318
13 773,366,591 8,037 1,771 68.8 594,578,854 6,179 1,600 1,202.0 −23.1181
14 1,135,115,839 13,318 3,937 190.9 900,474,708 10,565 1,372 6,194.6 −20.6711
15 1,190,882,178 15,851 3,452 155.4 874,512,980 11,640 220 3,263.3 −26.5660
16 1,210,381,894 14,736 3,674 201.8 909,595,796 11,074 416 6,542.8 −24.8505
17 1,137,777,262 15,909 2,600 289.3 1,068,191,648 14,936 1,200 6,391.5 −6.1159
18 1,203,277,781 14,810 5,099 188.4 926,144,408 11,399 1,544 4,402.0 −23.0315
19 1,111,448,881 13,341 3,170 269.4 914,087,713 10,972 579 7,378.1 −17.7571
20 1,190,621,519 14,520 3,961 305.6 880,914,146 10,743 1,111 4,538.0 −26.0122

Avg. 1,172,452,208 14,041 216.9 938,320,669 11,249 4,758.8 −20.1614

12
pe

rio
ds

21 1,983,206,578 15,619 328 176.2 1,870,326,188 14,730 832 5,020.4 −5.6918
22 1,813,886,612 15,961 1,233 263.6 1,765,473,725 15,535 1,350 9,743.6 −2.6690
23 1,741,938,045 14,942 315 274.9 1,787,753,330 15,335 970 5,817.6 2.6301
24 2,301,871,943 19,403 2,962 188.4 1,964,238,743 16,557 952 4,650.0 −14.6678
25 2,883,203,059 20,668 3,609 205.4 2,428,432,517 17,408 891 8,681.4 −15.7731
26 2,790,048,502 19,022 3,348 195.0 2,381,267,430 16,235 1,195 6,079.0 −14.6514
27 2,727,820,154 21,042 1,600 248.8 2,410,469,370 18,594 1,008 4,717.7 −11.6339
28 2,303,933,956 21,165 3,284 317.5 2,066,194,766 18,981 970 8,722.4 −10.3188
29 1,989,452,967 14,682 2,079 165.1 1,955,577,574 14,432 1,722 8,361.4 −1.7027
30 2,677,060,181 17,292 799 244.3 2,183,355,005 14,103 940 4,166.0 −18.4421

Avg. 2,321,242,200 17,980 227.9 2,081,308,865 16,191 6,595.9 −9.2920

Avg. 1,746,847,204 16,010 222.4 1,509,814,767 13,720 5,677.4 −14.7267
determined by that arbitrary initial choice. (In particular, if 𝛿ini = 0
ere chosen, the solution would coincide with the solution of the
yopic method). This discussion shows that the proposed method is
16
by nature more time-consuming than the myopic method, since it was
designed to make several iterations, each with a cost similar to the cost
of the myopic method, iterations over which the method adjusts its
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Table 7
Summary of the comparison between the myopic and the forward-looking approaches in the set of thirty instances with 4, 8, and 12 periods
and 𝜉 ∈ {1, 2, 3, 4, 𝑃 }.

Periods 𝜉 = 1 𝜉 = 2 𝜉 = 3 𝜉 = 4 𝜉 = 𝑃

W/T/L G(%) W/T/L G(%) W/T/L G(%) W/T/L G(%) W/T/L G(%)

4 3/6/1 −8.95 5/3/2 −2.27 6/2/2 −9.50 7/1/2 −9.50 – –
8 4/2/4 1.58 5/0/5 −2.27 7/0/3 −4.04 9/0/1 −15.23 10/0/0 −20.16
12 3/0/7 2.99 6/0/4 −4.58 6/0/4 −4.19 7/0/3 −5.22 9/0/1 −9.29

Tot./Avg. 10/8/12 −1.31 16/3/11 −3.04 19/2/9 −5.91 23/1/6 −9.98 19/0/1 −14.73
.

Table 8
Comparison of the forward-looking approach solutions with the solutions found by CPLEX (two hours of CPU time limit) in the ten instances with four periods and 𝜉 ∈ {1, 2, 3, 4}

𝜉 Inst. CPLEX Forward-looking approach

Ceiling of best Best objective Objects Leftovers gap (%) CPU Best objective Objects Leftovers CPU gap (%)
lower bound function value cost value time function value cost value time

1

1 314,108,050 314,108,050 9,155 0 0.0000 0.2 400,703,843 11,679 2,647 681.1 27.5688
2 183,065,998 187,422,365 6,715 0 2.3244 7,200.0 187,422,365 6,715 0 101.0 0.0000
3 339,152,904 339,152,904 8,916 2,820 0.0000 0.8 340,487,089 8,951 0 266.7 0.3934
4 309,586,584 309,586,584 9,677 0 0.0000 0.6 309,586,584 9,677 0 665.6 0.0000
5 182,258,424 182,258,424 6,541 0 0.0000 504.0 182,258,424 6,541 0 1,443.0 0.0000
6 148,039,222 148,039,222 3,914 0 0.0000 0.2 148,039,222 3,914 0 157.4 0.0000
7 580,789,654 580,790,380 12,842 1,912 0.0001 7,200.0 607,520,858 13,433 0 664.3 4.6024
8 80,065,392 143,120,844 7,236 0 44.0575 7,200.0 191,042,687 9,659 2,674 1,927.3 33.4835
9 226,123,995 226,123,995 4,757 0 0.0000 0.3 226,123,995 4,757 0 257.8 0.0000

10 288,510,000 288,510,000 8,850 0 0.0000 35.8 354,815,285 10,884 3,115 287.4 22.9820

Avg. 271,911,277 7,860 4.6382 2,214.2 294,800,035 8.621 645.2 8.9030

2

1 277,053,250 277,053,250 8,075 0 0.0000 0.5 300,655,883 8,763 2,647 1,190.8 8.5192
2 111,057,869 125,208,746 4,486 0 11.3018 7,200.0 187,421,443 6,715 922 557.7 49.6872
3 205,638,834 205,638,834 5,406 0 0.0000 0.8 339,152,364 8,916 3,360 481.9 64.9262
4 216,807,866 277,209,196 8,665 1,484 21.7891 7,200.0 277,209,196 8,665 1,484 808.8 0.0000
5 162,302,164 235,866,350 8,465 2,410 31.1889 7,200.1 182,257,683 6,541 741 1,446.4 −22.7284
6 136,049,331 136,049,331 3,597 0 0.0000 0.6 179,167,551 4,737 0 270.3 31.6931
7 406,039,028 491,516,168 10,868 0 17.3905 7,200.0 634,518,412 14,030 2,368 1,633.8 29.0941
8 80,063,257 186,631,657 9,436 2,987 57.1009 7,200.0 166,697,412 8,428 0 913.2 −10.6811
9 226,118,364 226,122,466 4,757 1,529 0.0018 7,200.0 226,122,767 4,757 1,228 458.4 0.0001

10 249,388,985 249,388,985 7,650 1,015 0.0000 495.9 284,400,266 8,724 2,134 551.8 14.0388

Avg. 241,068,498 7,141 13.8773 4,369.8 277,760,298 8,028 831.3 16.4549

3

1 177,005,290 177,005,290 5,159 0 0.0000 0.9 277,051,660 8,075 1,590 922.0 56.5226
2 111,054,694 169,836,470 6,085 1,965 34.6108 7,200.0 170,926,810 6,124 154 355.7 0.6409
3 115,486,404 205,637,468 5,406 1,366 43.8398 7,200.0 205,638,144 5,406 690 306.6 0.0000
4 127,232,184 309,582,103 9,677 4,481 58.9020 7,200.0 187,633,080 5,865 0 808.2 −39.3924
5 53,610,336 203,212,152 7,293 0 73.6185 7,200.0 182,257,479 6,541 945 2,669.0 −10.3113
6 92,931,111 92,931,111 2,457 0 0.0000 1.2 92,931,111 2,457 0 160.1 0.0000
7 352,310,540 352,310,540 7,790 0 0.0000 14.1 459,767,078 10,166 438 832.0 30.5006
8 36,551,592 203,245,012 10,276 3,992 82.0160 7,200.0 143,119,673 7,236 1,171 2,679.7 −29.5835
9 226,118,158 226,122,466 4,757 1,529 0.0019 7,200.0 226,122,641 4,757 1,354 347.7 0.0000

10 178,974,000 178,974,000 5,490 0 0.0000 57.0 178,974,000 5,490 0 314.8 0.0000

Avg. 211,885,661 6,439 29.2989 4,327.3 212,442,168 6,212 939.6 0.8377

4

1 176,988,585 177,003,343 5,159 1,947 0.0083 7,200.0 277,048,333 8,075 4,917 1,110.1 56.5215
2 111,047,720 169,836,144 6,085 2,291 34.6148 7,200.0 170,926,618 6,124 346 331.7 0.6421
3 115,475,322 205,637,138 5,406 1,696 43.8451 7,200.0 205,637,682 5,406 1,152 304.6 0.0003
4 127,219,873 314,860,429 9,842 4,835 59.5948 7,200.0 187,632,447 5,865 633 1,510.7 −40.4077
5 53,602,745 274,288,791 9,844 4,425 80.4576 7,200.0 182,257,683 6,541 741 1,513.6 −33.5526
6 92,926,077 92,930,701 2,457 410 0.0050 7,200.0 92,930,802 2,457 309 248.2 0.0001
7 352,270,070 459,762,829 10,166 4,687 23.3800 7,200.0 459,763,070 10,166 4,446 1,421.0 0.0001
8 36,542,003 347,683,703 17,579 11,338 89.4899 7,200.0 143,119,381 7,236 1,463 3,001.7 −58.8363
9 226,116,418 226,122,302 4,757 1,693 0.0026 7,200.0 226,122,426 4,757 1,569 394.3 0.0001

10 178,945,769 178,972,776 5,490 1,224 0.0151 7,200.0 178,972,994 5,490 1,006 514.3 0.0001

Avg. 244,709,816 7,679 33.1413 7,200.0 212,441,144 6,212 1,035.0 −7.5632
a
p
r

vision of the future. Moreover, as shown in Tables 2–6 and Fig. 9, the
proposed method outperforms the myopic approach in situations where
there is plenty of room for leftover utilization (like in the cases 𝜉 = 4
nd 𝜉 = 𝑃 ). In those situations, as detailed in Section 4.1 and reinforced
n the previous paragraph, there is room to vary the parameters of the
roposed method if the computational effort is a limiting factor.

The comparison with the solution found by an exact method like
PLEX with a time limit also deserves a little discussion. The imposed

imit of two hours was arbitrary, related to the need to carry out a
arge number of experiments. However, experiments with limits of ten
17
nd twenty CPU hours were also performed, and no significant im-
rovement was observed in the solutions found by CPLEX for the more
elevant instances with 8 and 12 periods and 𝜉 ∈ {4, 𝑃 } reported in

Table 9. In fact, even with higher time limits, CPLEX was not even able
to find feasible solutions in most of the problems, as already reported.
These facts reinforce that modifying the comparison to impose the same
time limit on the forward-looking approach that was imposed on CPLEX
would also be an arbitrary choice, since this limit could be two, ten
or twenty hours for CPLEX without any change in the quality of the
solution found. (This fact is not rare and can be considered expected,
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Table 9
Comparison of the forward-looking approach solutions with the solutions found by CPLEX (two hours of CPU time limit) in the twenty instances with eight and twelve periods
and 𝜉 ∈ {4, 𝑃 }.
𝜉 Inst. CPLEX Forward-looking approach

Ceiling of best Best objective Objects Leftovers gap (%) CPU Best objective Objects Leftovers CPU gap (%)
lower bound function value cost value time function value cost value time

4

11 473,195,099 1,181,466,014 12,319 0 59.9500 7,200.0 1,045,086,574 10,897 1,108 3,000.9 −11.5432
12 Solution not found 1,283,103,972 14,193 0 5,231.0 –
13 372,869,484 612,863,033 6,369 361 39.1600 7,200.0 594,580,454 6,179 0 1,498.7 −2.9831
14 222,193,109 1,779,131,599 20,874 1,169 87.5100 7,200.0 1,034,033,507 12,132 1,117 4,999.5 −41.8799
15 262,875,214 1,779,602,401 23,687 1,909 85.2300 7,200.0 901,935,429 12,005 221 4,162.6 −49.3181
16 383,738,872 1,550,599,272 18,878 1,892 75.2500 7,200.0 1,036,005,844 12,613 750 3,397.7 −33.1867
17 Solution not found 1,083,925,806 15,156 1,002 8,488.7 –
18 451,919,637 1,202,550,436 14,801 1,212 62.4200 7,200.0 925,901,698 11,396 510 4,619.3 −23.0052
19 618,233,892 1,642,891,463 19,720 1,457 62.3700 7,200.0 1,026,389,411 12,320 2,109 6,673.1 −37.5254
20 Solution not found 1,151,100,925 14,038 1,037 4,336.0 –

Avg. 1,392,729,174 16,664 67.4129 7,200.0 1,008,206,362 12,093 4,640.8 −28.4917

21 997,754,130 3,307,163,912 26,046 892 69.8300 7,200.0 2,248,327,065 17,707 1,553 3,668.8 −32.0165
22 Solution not found 1,876,619,885 16,513 0 5,023.8 –
23 1,113,795,638 2,764,226,978 23,711 1,402 59.7100 7,200.0 2,000,862,162 17,163 378 6,223.4 −27.6159
24 992,737,680 3,085,338,077 26,007 2,368 67.8200 7,200.0 2,448,388,251 20,638 879 2,789.5 −20.6444
25 664,024,760 3,857,201,153 27,650 1,497 82.7800 7,200.0 2,704,226,259 19,385 626 3,955.0 −29.8915
26 930,197,235 4,649,597,500 31,700 0 79.9900 7,200.0 2,499,194,368 17,039 957 4,805.9 −46.2492
27 Solution not found 2,912,940,914 22,470 2,476 5,023.6 –
28 Solution not found 2,569,542,877 23,605 3,003 5,369.5 –
29 Solution not found 2,156,800,182 15,917 1,069 6,318.9 –
30 822,377,280 3,478,070,731 22,466 3,059 76.3600 7,200.0 2,225,775,255 14,377 0 4,611.4 −36.0055

Avg. 3,523,599,725 26,263 72.7483 7,200.0 2,364,267,722 18,481 4,779.0 −32.0705

𝑃

11 Solution not found 7,200.0 986,583,007 10,287 2,015 3,695.6 –
12 Solution not found 7,200.0 1,328,123,427 14,691 1,737 3,980.1 –
13 191,251,115 4,109,235,104 42,704 0 95.3458 7,200.0 594,578,854 6,179 1,600 1,202.0 −85.5306
14 Solution not found 7,200.0 900,474,708 10,565 1,372 6,194.6 –
15 Solution not found 7,200.0 874,512,980 11,640 220 3,263.3 –
16 Solution not found 7,200.0 909,595,796 11,074 416 6,542.8 –
17 Solution not found 7,200.0 1,068,191,648 14,936 1,200 6,391.5 –
18 303,252,735 3,831,863,430 47,163 35,994 92.0860 7,200.0 926,144,408 11,399 1,544 4,402.0 −75.8306
19 Solution not found 7,200.0 914,087,713 10,972 579 7,378.1 –
20 Solution not found 7,200.0 880,914,146 10,743 1,111 4,538.0 –

Avg. 3,970,549,267 44,934 93.7159 7,200.0 938,320,669 11,249 4,758.8 −80.6806

21 Solution not found 7,200.0 1,870,326,188 14,730 832 5,020.4 –
22 Solution not found 7,200.0 1,765,473,725 15,535 1,350 9,743.6 –
23 Solution not found 7,200.0 1,787,753,330 15,335 970 5,817.6 –
24 Solution not found 7,200.0 1,964,238,743 16,557 952 4,650.0 –
25 Solution not found 7,200.0 2,428,432,517 17,408 891 8,681.4 –
26 Solution not found 7,200.0 2,381,267,430 16,235 1,195 6,079.0 –
27 Solution not found 7,200.0 2,410,469,370 18,594 1,008 4,717.7 –
28 Solution not found 7,200.0 2,066,194,766 18,981 970 8,722.4 –
29 Solution not found 7,200.0 1,955,577,574 14,432 1,722 8,361.4 –
30 Solution not found 7,200.0 2,183,355,005 14,103 940 4,166.0 –

Avg. – – – – 7,200.0 2,081,308,865 16,191 6,596.0 –
since as the bottom-right of Table 1 shows we are dealing with instances
with a huge number of real and binary variables and constraints.)

In the present work, the implementation of the myopic method, the
implementation of the proposed method, and the solution of the inte-
grated multi-period problem lie in the use of CPLEX. By default, CPLEX
uses a deterministic type of parallelism, which impacts all presented
experiments in a similar way. For this reason, the use of parallelism
for the resolution of the models, whether for a single period or for
the multiperiod problem as a whole, was not highlighted. Naturally,
any improvement in the parallelization of integer programming models
would positively impact all tested methods. In particular, in practice,
the considered (most updated) version of CPLEX has an opportunistic
mode of parallelization that promises better results at the price of
losing the determinism of the results. Apart from the possibility of
parallelizing the resolution of the single period models, the rolling
horizon methods such as the myopic method and the forward-looking
proposed method are sequential in nature, since each period uses the
solution of the previous period as input data.

The present work demonstrated that a forward-looking method has
the potential to address large instances of the considered problem and
find better quality solutions than a myopic method. The drawback of
the proposed method, which makes it expensive and prevents it from
addressing even larger instances, is the use of an exact method to
solve the subproblems of a single period. For this reason, the next
development should be to develop a heuristic method for the single-
period cutting problem with usable leftovers introduced in Andrade
18
et al. (2014). The instances and their solutions presented in the present
work will serve as a set of tests for that and other future developments.

5. Concluding remarks

This work contributes to the literature on two-dimensional cutting
stock problems with usable leftovers, which is very limited. A forward-
looking approach for the multi-period two-dimensional non-guillotine
cutting stock problem with usable leftovers, proposed in Birgin et al.
(2020), was introduced, this being the first method reported in the
literature to address this problem. The method solves a sequence of
single-period subproblems and differs with a myopic approach in the
objective function being minimized. On the one hand, the myopic
approach greedily minimizes the cost of the raw material that must be
purchased to produce the orders of the period. On the other hand, the
forward-looking approach takes into consideration the future impact
of the decisions of the period. This looking-head feature allows the
method to suggest the purchase of some extra raw material whose
leftovers are expected to be used in future periods, resulting in a lower
overall cost. Numerical experiments shown the efficiency and effec-
tiveness of the method. In summary, the proposed approach greatly
improves the solution found with a commercial solver or with a myopic
approach in problems with a reasonable number of periods in which
usable leftovers can be used over several periods after they have been
generated, i.e. a scenario in which leftovers can play a relevant role.

On the one hand, the proposed method can be applied to in-

stances with a large number of periods. On the other hand, solving the
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Table A.10
Summary of notations used throughout the article to define the considered problem
and the introduced forward-looking approach.

Problem data

𝑝 initial instant of the considered horizon (zero when omitted)
𝑃 final instant of the considered horizon
𝜉 leftovers’ expiration date
𝑚𝑠 number of purchasable objects available at instant 𝑠
𝑠𝑗 name of the 𝑗th purchasable object at instant 𝑠
𝑊𝑠𝑗 width of object 𝑠𝑗
𝐻𝑠𝑗 height of object 𝑠𝑗
𝑐𝑠𝑗 cost per unit of area of object 𝑠𝑗
𝑛𝑠 number of items that must be produced along the period [𝑠, 𝑠 + 1)
𝑠𝑖 name of the 𝑖th item that must be produced along the period [𝑠, 𝑠 + 1)
𝑤𝑠𝑖 width of item 𝑠𝑖
ℎ𝑠𝑖 height of item 𝑠𝑖
𝑑 number of items in the catalogue
̄𝑖 name of the 𝑖th item in the catalogue
𝑤̄𝑖 width of 𝑖th item in the catalogue
ℎ̄𝑖 height of 𝑖th item in the catalogue

Parameters of the forward-looking approach

𝛿ini initial utilization rate of the leftovers
𝜎 constant used to update the leftovers utilization rates
𝜖 stopping criterion tolerance

single-period subproblems exactly, even using parallelism, limits the
applicability to instances with large single-period subproblems. Then,
devising a heuristic method for the single-period problem would have
an immediate impact on methods for solving the multi-period problem.
That will be a subject of future work. In another line of research, the
problem introduced in Birgin et al. (2020) and for which a method was
developed in the present work, could be modified to take into account
situations that sometimes arise in practice. For example, the problem
could be modified to allow the anticipated production of items included
in future period orders. In this case, storage costs and production
capacity limits for each period could be considered. In addition, in the
case of isotropic materials, ninety-degree rotations of the items could
also be contemplated, as for example considered in Ayadia et al. (2017).
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Appendix

Table A.10 summarizes the notations used throughout the article
to define the considered problem and the introduced forward-looking
approach. Table A.11 describes in detail the twenty five instances
with four periods introduced in Birgin et al. (2020) and considered
in the parameters tuning Section 4.1 of the present work. In addition,
Table A.12 shows the number of binary variables, continuous variables,
and constraints of each instance of Table A.11 when 𝜉 ∈ {1, 2, 3, 4}.

able A.13 describes in detail the thirty instances with four, eight,
nd twelve periods introduced in the present work. Instances were
enerated with the random instances generator introduced in Birgin
t al. (2020) and available at https://github.com/oberlan/bromro2.
he number of binary variables, continuous variables, and constraints
f each instance of Table A.13, for 𝜉 ∈ {1, 2, 3, 4, 𝑃 } was given in
able 1. In Tables A.11 and A.13, notation 𝑎(𝑏 × 𝑐)[𝑠] means that there
re 𝑎 objects or items with width 𝑏 and height 𝑐; and, in the case
f objects, that the cost per unit of area is 𝑠. When 𝑎 is omitted, it
eans that there is a single copy of the described object or item; and,
hen 𝑠 is omitted, it means that the cost per unit of area is 1. Column
represents the number of items in the catalogue, that are the ones
hose dimensions are underlined in the tables.
Table A.11
Description of the twenty five instances with four periods taken from Birgin et al. (2020) and considered in the parameter tuning
Section 4.1 of the present work.

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

1 3
0 3 21 × 17,19 × 19,24 × 13 2

1
10 × 11,9 × 11

1 1 10 × 16 3 7 × 6,7 × 5,7 × 4
2 1 10 × 12 2 2(6 × 3)

2 4

0 2 14 × 8,16 × 6 3

2

3 × 7,6 × 8,4 × 8
1 1 15 × 10 3 5 × 3, 2(2 × 5)
2 1 20 × 15 2 5 × 3, 3 × 2
3 1 15 × 10 2 2(2 × 3)

3 4

0 2 15 × 6,15 × 5 3

2

2(1 × 6), 10 × 6
1 1 12 × 7 1 3 × 5
2 1 20 × 10 2 5 × 3,3 × 2
3 1 20 × 8 6 2(2 × 3), 10 × 1, 2 × 2, 2(5 × 2)

(continued on next page)

https://github.com/oberlan/bromro2
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Table A.11 (continued).

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

4 4

0 2 13 × 8,12 × 6 5

2

1 × 5,2 × 5,1 × 4,1 × 3,3 × 2
1 3 10 × 8,12 × 10,15 × 10 3 3 × 7,2 × 3,2 × 4
2 1 8 × 4 2 10 × 1, 1 × 3
3 0 3 3 × 1, 3 × 3,4 × 4

5 4

0 2 10 × 4,13 × 8 4

1

2(1 × 5), 2 × 5,3 × 5
1 2 10 × 9,12 × 9 2 5 × 3,6 × 3
2 3 10 × 10, 2(12 × 9) 3 5 × 3,6 × 2,3 × 3
3 0 3 1 × 2, 5 × 4,4 × 2

6 4

0 2 22 × 17,14 × 30 5

4

3(2 × 11), 2(5 × 5)
1 2 17 × 29,24 × 10 2 2(4 × 10)
2 2 18 × 19,26 × 22 3 3(5 × 4)
3 3 24 × 12,15 × 18,17 × 13 8 4(3 × 3), 4 × 2, 2(7 × 1), 11 × 1

7 4

0 2 (10 × 12) 2, 12 × 10 3

1

5 × 4,8 × 2, 2 × 2
1 1 17 × 15 1 3 × 7
2 1 17 × 15 1 8 × 4
3 1 17 × 15 1 4 × 9

8 4

0 2 10 × 12, (12 × 10) 2 3

1

5 × 4,8 × 2, 2 × 2
1 1 17 × 15 1 3 × 7
2 1 17 × 15 1 8 × 4
3 1 17 × 15 1 4 × 9

9 4

0 3 30 × 20, 2(10 × 10) 3 6

2

3 × 7,8 × 2,10 × 1,5 × 4,2 × 9, 2 × 2
1 3 (30 × 20) 3, 2(10 × 10) 3 6 5 × 3,9 × 3,6 × 1,3 × 8,4 × 1,7 × 3
2 0 4 3 × 2,7 × 2,4 × 5, 4 × 1
3 0 4 8 × 4,4 × 2,3 × 7,6 × 2

10 4

0 2 14 × 21,19 × 19 7

1

2(11 × 3), 3(2 × 11), 2(5 × 5)
1 1 27 × 23 9 9 × 7, 4(9 × 6), 2(5 × 3), 2(5 × 4)
2 1 20 × 15 9 5(3 × 2), 4(3 × 1)
3 1 17 × 17 7 4(3 × 4), 3(2 × 1)

11 4

0 2 30 × 10,23 × 16 1

2

6 × 6
1 1 28 × 12 3 2 × 5, 2(4 × 1)
2 2 22 × 11,26 × 23 3 2(9 × 3), 6 × 6
3 1 17 × 29 3 2(4 × 3), 7 × 2

12 4

0 2 37 × 20,22 × 24 2

1

2(11 × 6)
1 1 21 × 23 1 6 × 6
2 1 36 × 30 2 2(13 × 5)
3 2 13 × 18,10 × 17 2 4 × 5, 4 × 2

13 4

0 2 25 × 34,36 × 14 2

2

2(6 × 6)
1 2 23 × 18,33 × 33 1 6 × 3
2 1 17 × 26 1 1 × 6
3 2 38 × 23,30 × 36 1 4 × 10

14 4

0 1 40 × 33 4

1

2(3 × 12), 2(15 × 10)
1 1 26 × 36 4 2(3 × 4), 2(10 × 9)
2 1 13 × 19 4 2(5 × 3), 2(2 × 3)
3 1 32 × 19 2 2(8 × 6)

15 4

0 2 10 × 24,26 × 38 2

2

2(11 × 13)
1 1 25 × 23 2 2(6 × 2)
2 1 36 × 36 4 2(3 × 4), 2(6 × 13)
3 1 39 × 25 4 2(2 × 4), 2(14 × 3)

16 4

0 3 20 × 38, 2(11 × 17) 4

3

2(2 × 4), 2(6 × 16)
1 1 33 × 21 2 2(8 × 9)
2 1 12 × 22 2 2(4 × 2)
3 1 30 × 14 2 2(5 × 1)

17 4

0 1 15 × 39 3

2

2(6 × 2), 5 × 9
1 1 19 × 13 4 2(7 × 2), 2(5 × 6)
2 1 20 × 40 2 2(3 × 4)
3 2 38 × 40,22 × 26 3 2(4 × 13), 4 × 8

18 4

0 1 22 × 38 1

1

2 × 11
1 3 2(22 × 12), 33 × 17 4 2(14 × 5), 2(12 × 7)
2 2 12 × 13,23 × 11 2 2(7 × 5)
3 2 10 × 23,14 × 20 3 2(1 × 2), 4 × 10

(continued on next page)
20
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Table A.11 (continued).

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

19 4

0 2 14 × 14,39 × 11 2

2

11 × 6,8 × 5
1 1 15 × 23 3 2(6 × 10), 2 × 10
2 1 39 × 14 3 2(5 × 5), 7 × 2
3 1 36 × 11 2 3 × 1, 3 × 2

20 4

0 1 27 × 24 3

4

4 × 6, 2(10 × 2)
1 2 35 × 27,27 × 11 1 14 × 5
2 2 23 × 30,17 × 13 3 2(6 × 8), 5 × 5
3 1 24 × 34 2 2(3 × 7)

21 4

0 3 10 × 17,26 × 15,12 × 11 1

1

2 × 1
1 1 23 × 20 1 10 × 3
2 3 11 × 16,22 × 15,28 × 30 1 3 × 10
3 1 30 × 28 2 2(8 × 2)

22 4

0 2 16 × 24,20 × 10 4

1

5 × 9,8 × 6, 2(2 × 4)
1 1 11 × 13 1 2 × 5
2 3 22 × 17,13 × 11,29 × 29 1 3 × 7
3 2 30 × 23,18 × 23 2 2(4 × 8)

23 4

0 3 16 × 12,12 × 10,19 × 25 6

2

2(4 × 5), 2(1 × 10), 2(4 × 3)
1 3 18 × 20,25 × 13,21 × 16 2 2(2 × 5)
2 2 12 × 24,14 × 16 5 2(2 × 2), 5 × 9, 2(6 × 2)
3 1 14 × 27 4 3 × 6, 2(4 × 6), 1 × 4

24 4

0 1 21 × 21 5

3

4 × 2, 2(3 × 9), 2(8 × 3)
1 2 19 × 30,23 × 12 3 2 × 6, 8 × 5,5 × 4
2 2 21 × 28,24 × 11 1 10 × 2
3 1 29 × 16 2 2(3 × 5)

25 4

0 3 22 × 28,30 × 25,19 × 22 2

2

2(6 × 5)
1 2 22 × 22,12 × 22 4 2(4 × 8), 2(2 × 3)
2 1 22 × 11 4 3 × 3, 3 × 1, 2(8 × 1)
3 2 23 × 19,12 × 23 4 4 × 9,4 × 8, 2(7 × 9)
Table A.12
Number of binary variables (BV), continuous variables (CV), and constraints (CO) of the twenty five instances with four periods taken from
Birgin et al. (2020) and considered in the parameter tuning Section 4.1 of the present work.

Inst. 𝜉 = 1 𝜉 = 2 𝜉 = 3 𝜉 = 4

BV CV CO BV CV CO BV CV CO BV CV CO

1 81 82 410 153 162 802 297 354 1,498 297 354 1,498
2 89 88 423 165 168 823 285 296 1,439 509 552 2,431
3 115 92 547 211 172 1,227 403 300 2,947 659 556 4,003
4 121 98 588 237 206 1,292 461 438 2,508 653 662 3,404
5 127 108 651 267 256 1,507 427 432 2,467 587 656 3,299
6 276 168 1,704 468 296 3,448 772 488 6,392 1,060 744 7,512
7 61 80 275 121 160 583 217 288 1,071 409 544 1,999
8 61 80 275 121 160 583 217 288 1,071 409 544 1,999
9 204 112 1,392 360 208 2,568 672 496 4,488 1,008 880 5,976
10 373 132 2,171 521 212 4,231 713 340 6,351 905 596 7,279
11 108 100 546 224 212 1,202 360 340 1,994 584 596 2,986
12 85 106 382 161 190 786 281 326 1,410 505 614 2,434
13 87 114 374 167 214 766 343 422 1,566 599 710 2,654
14 106 86 482 174 154 898 262 258 1,338 374 402 1,850
15 108 94 514 212 178 1,238 372 314 2,294 628 602 3,382
16 106 102 494 206 202 1,006 374 370 1,846 806 802 3,574
17 113 104 513 181 172 877 285 276 1,421 413 420 1,965
18 143 136 735 275 272 1,491 483 520 2,531 595 664 3,043
19 92 90 440 180 174 940 308 310 1,580 564 598 2,668
20 101 100 466 233 220 1,090 425 396 1,882 585 540 2,490
21 87 114 402 211 274 1,034 355 434 1,818 643 818 3,210
22 112 128 510 224 272 1,078 336 400 1,678 528 656 2,606
23 224 150 1,301 436 310 2,953 748 598 4,873 1,084 982 6,361
24 109 102 460 217 214 972 377 374 1,684 505 502 2,212
25 180 140 996 328 252 2,100 584 476 3,772 920 860 5,260
21



Expert Systems With Applications 223 (2023) 119866E.G. Birgin et al.
Table A.13
Description of the considered thirty instances with four, eight, and twelve periods.

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

1 4

0 2 77 × 100,67 × 77 4

2

2(6 × 5), 2(9 × 6)
1 2 81 × 36,95 × 33 6 8 × 11, 2(15 × 6), 3(18 × 14)
2 2 54 × 74,78 × 100 10 3(6 × 8), 3(7 × 9), 2(17 × 13), 2(13 × 8)
3 1 53 × 68 7 3(10 × 5), 5 × 6, 18 × 15, 2(16 × 14)

2 4

0 3 49 × 82,34 × 70,57 × 76 6

2

2(7 × 5), 19 × 15, 3(17 × 15)
1 2 39 × 54,39 × 41 4 17 × 20, 2(9 × 20), 20 × 17
2 2 38 × 72,85 × 96 7 10 × 10, 3(14 × 8), 18 × 20, 2(6 × 18)
3 1 43 × 60 4 14 × 8, 3(18 × 7)

3 4

0 1 69 × 44 4

1

15 × 6,14 × 8, 2(8 × 11)
1 2 30 × 79,39 × 92 6 3(8 × 17), 3(18 × 17)
2 2 83 × 89,65 × 91 8 13 × 11, 3(8 × 5), 2(9 × 14), 2(18 × 17)
3 3 96 × 73,54 × 65,95 × 55 4 14 × 14, 2(10 × 15), 12 × 13

4 4

0 2 41 × 97,85 × 69 4

3

14 × 12, 2(18 × 8), 19 × 15
1 1 90 × 95 13 3(14 × 10), 3(8 × 10), 2(19 × 12), 3(17 × 6), 2(17 × 9)
2 1 75 × 76 6 18 × 12, 5 × 20, 2(15 × 20), 2(9 × 11)
3 2 80 × 35,85 × 60 5 19 × 13, 3(16 × 14), 12 × 18

5 4

0 3 91 × 59,52 × 37,40 × 66 4

1

2(6 × 5), 2(19 × 14)
1 1 88 × 90 13 2(20 × 9), 3(7 × 7), 2(7 × 15), 3(19 × 8), 3(11 × 16)
2 1 83 × 47 10 3(20 × 8), 2(20 × 9), 3(14 × 18), 2(17 × 17)
3 1 65 × 94 6 3(7 × 8), 3(17 × 9)

6 4

0 1 63 × 39 3

2

2(5 × 8), 12 × 7
1 4 81 × 87, 2(38 × 30), 81 × 54 5 2(14 × 18), 3(7 × 19)
2 3 83 × 91,47 × 31,52 × 71 3 16 × 6,16 × 9,7 × 11
3 3 53 × 56,44 × 53,37 × 99 6 3(11 × 5), 14 × 19, 2(6 × 12)

7 4

0 1 82 × 95 7

2

12 × 17,10 × 5,9 × 17, 3(6 × 18), 12 × 20
1 3 57 × 54, 2(33 × 36) 8 3(20 × 17), 2(11 × 8), 2(15 × 14), 18 × 5
2 2 95 × 67,99 × 57 9 2(10 × 17), 5 × 8, 3(6 × 6), 3(14 × 9)
3 3 42 × 92,88 × 100,85 × 86 11 15 × 15, 2(16 × 10), 2(6 × 5), 3(16 × 12), 3(12 × 17)

8 4

0 2 2(56 × 33) 10

1

3(13 × 17), 2(17 × 7), 17 × 10,7 × 13, 3(15 × 10)
1 1 70 × 94 8 12 × 8, 2(9 × 7), 18 × 5, 3(14 × 13), 6 × 9
2 2 55 × 40,60 × 59 4 3(16 × 9), 11 × 14
3 1 71 × 53 13 3(16 × 19), 2(5 × 5), 2(18 × 6), 3(11 × 14), 3(12 × 18)

9 4

0 3 66 × 99,93 × 54,30 × 74 4

2

3(5 × 16), 11 × 16
1 1 56 × 93 8 3(14 × 12), 14 × 10, 3(10 × 7), 19 × 10
2 3 67 × 68,43 × 59,93 × 74 6 2(18 × 10), 13 × 17, 3(19 × 7)
3 3 93 × 92,86 × 53,43 × 34 2 14 × 20,12 × 9

10 4

0 2 78 × 95,61 × 90 7

3

2(9 × 19), 2(12 × 6), 3(6 × 12)
1 1 62 × 79 7 3(20 × 15), 3(15 × 7), 16 × 18
2 2 36 × 60,35 × 96 6 2(16 × 16), 7 × 17, 3(9 × 8)
3 2 84 × 72,33 × 98 7 2(11 × 5), 3(7 × 17), 20 × 16,19 × 12

11 8

0 3 61 × 85,37 × 95,84 × 46 4

2

16 × 20, 3(5 × 6)
1 3 72 × 55,62 × 41,35 × 33 6 3(8 × 5), 8 × 17, 2(14 × 5)
2 3 90 × 68,47 × 44,52 × 63 3 2(14 × 16), 14 × 17
3 4 2(39 × 56), 81 × 81,61 × 44 10 2(19 × 19), 3(7 × 15), 2(16 × 15), 3(18 × 9)
4 2 54 × 97,40 × 86 7 3(17 × 7), 13 × 6, 3(10 × 6)
5 4 2(33 × 43), 93 × 77,84 × 70 9 3(16 × 16), 3(10 × 11), 3(14 × 11)
6 3 41 × 74,86 × 91,62 × 30 8 3(19 × 8), 3(8 × 9), 2(7 × 6)
7 3 100 × 37,69 × 65,83 × 62 7 2(13 × 18), 7 × 8,13 × 12, 2(12 × 7), 14 × 18

12 8

0 3 68 × 37,70 × 43,97 × 52 7

3

20 × 14,14 × 10,20 × 15, 3(17 × 19), 7 × 13
1 3 88 × 39,89 × 35,55 × 79 8 3(7 × 17), 3(15 × 11), 10 × 12,20 × 10
2 2 66 × 77,58 × 88 11 18 × 9, 3(10 × 20), 2(18 × 5), 2(7 × 12), 3(14 × 15)
3 2 95 × 69,85 × 97 8 2(20 × 14), 14 × 18, 3(8 × 17), 2(14 × 15)
4 2 30 × 84,65 × 56 6 3(5 × 20), 2(12 × 13), 14 × 9
5 3 75 × 63,42 × 55,73 × 89 5 5 × 9, 2(17 × 15), 2(11 × 9)
6 3 90 × 57,67 × 52,76 × 86 10 3(20 × 15), 13 × 19, 3(16 × 5), 3(19 × 5)
7 2 46 × 91,88 × 56 10 2(10 × 18), 14 × 9, 3(11 × 17), 3(17 × 9), 9 × 8

13 8

0 2 58 × 43,39 × 51 5

4

10 × 18, 3(9 × 9), 12 × 8
1 3 94 × 47,97 × 39,85 × 70 6 8 × 8, 3(17 × 6), 2(15 × 6)
2 2 84 × 72,85 × 77 6 13 × 18, 3(17 × 6), 2(5 × 13)
3 3 83 × 81,55 × 67,81 × 86 7 12 × 12, 3(13 × 5), 15 × 11, 2(5 × 9)
4 3 51 × 61,97 × 53,41 × 46 2 18 × 14, 6 × 8

(continued on next page)
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Table A.13 (continued).

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

5 2 62 × 45,60 × 75 3 2(6 × 19), 6 × 16
6 3 44 × 91,70 × 99,30 × 51 3 10 × 9, 2(11 × 7)
7 3 96 × 85,41 × 59,98 × 73 5 3(18 × 9), 2(20 × 8)

14 8

0 3 33 × 32,57 × 91,62 × 84 4

1

3(12 × 13), 10 × 10
1 2 91 × 83,81 × 68 4 2(16 × 18), 16 × 7,15 × 8
2 2 70 × 35,39 × 72 7 8 × 19, 2(10 × 10), 3(6 × 16), 10 × 6
3 2 78 × 92,51 × 93 5 20 × 14, 3(15 × 8), 16 × 17
4 3 50 × 70,71 × 81,33 × 47 10 2(18 × 5), 13 × 15, 2(15 × 5), 3(17 × 5), 2(15 × 17)
5 3 57 × 50,34 × 86,94 × 45 8 3(19 × 16), 3(18 × 12), 14 × 14,14 × 17
6 3 68 × 94,50 × 68,48 × 53 11 3(5 × 5), 3(8 × 16), 3(14 × 12), 16 × 20,11 × 6
7 2 61 × 64,73 × 89 6 3(7 × 6), 2(12 × 15), 16 × 5

15 8

0 2 85 × 40,55 × 36 5

4

3(17 × 13), 2(8 × 11)
1 3 59 × 53,92 × 88,51 × 58 10 2(18 × 12), 3(7 × 18), 3(11 × 17), 13 × 10, 8 × 11
2 3 98 × 82, 2(44 × 49) 6 16 × 6, 3(18 × 17), 19 × 19,19 × 16
3 2 51 × 89,32 × 70 4 3(10 × 17), 13 × 20
4 4 35 × 51,38 × 80, 2(31 × 49) 7 3(18 × 14), 2(15 × 8), 2(13 × 5)
5 3 67 × 77,37 × 55,39 × 78 8 2(17 × 6), 3(10 × 6), 3(16 × 17)
6 2 88 × 70,54 × 83 11 8 × 20, 2(11 × 11), 3(11 × 16), 2(15 × 10), 3(20 × 17)
7 2 57 × 83,45 × 66 6 14 × 14, 3(16 × 10), 14 × 20,10 × 7

16 8

0 5 31 × 98, 2(51 × 39), 2(30 × 64) 5

2

2(20 × 20), 2(20 × 17), 18 × 14
1 2 86 × 87,82 × 98 4 3(7 × 9), 13 × 5
2 3 68 × 97,65 × 65,78 × 34 10 2(17 × 13), 3(16 × 12), 12 × 11,6 × 17, 3(7 × 5)
3 2 54 × 85,53 × 59 4 12 × 6, 3(7 × 11)
4 2 43 × 64,35 × 85 9 3(14 × 9), 3(16 × 17), 3(15 × 18)
5 3 82 × 99,38 × 98,52 × 53 13 3(7 × 5), 3(9 × 10), 3(15 × 7), 13 × 10, 3(6 × 6)
6 4 66 × 47, 3(35 × 41) 6 20 × 7, 2(19 × 12), 3(20 × 18)
7 2 73 × 50,38 × 84 3 14 × 19, 2(17 × 11)

17 8

0 2 81 × 37,33 × 64 6

2

2(9 × 15), 19 × 18, 3(11 × 14)
1 3 34 × 83,59 × 86,72 × 44 5 20 × 15,14 × 10, 3(18 × 14)
2 2 55 × 91,32 × 43 8 17 × 7, 2(14 × 20), 2(8 × 7), 3(8 × 18)
3 2 41 × 96,41 × 86 7 2(9 × 9), 18 × 7,15 × 16,17 × 18, 2(8 × 15)
4 2 80 × 86,74 × 59 11 3(14 × 14), 3(6 × 20), 3(19 × 8), 2(11 × 12)
5 4 85 × 39,85 × 63, 2(51 × 35) 10 2(20 × 16), 3(14 × 10), 2(18 × 20), 3(8 × 17)
6 2 78 × 53,62 × 93 9 3(20 × 16), 2(11 × 5), 2(15 × 12), 14 × 14,9 × 14
7 2 56 × 66,52 × 85 15 3(6 × 8), 3(8 × 5), 3(11 × 17), 3(12 × 16), 3(20 × 6)

18 8

0 2 45 × 83,97 × 52 7

2

15 × 15, 3(11 × 13), 3(18 × 13)
1 2 89 × 87,88 × 45 8 2(18 × 9), 6 × 7, 2(12 × 8), 8 × 19, 2(18 × 6)
2 3 2(65 × 33), 92 × 72 8 3(19 × 20), 2(15 × 14), 3(9 × 14)
3 3 76 × 40,54 × 71,43 × 78 9 3(7 × 8), 5 × 17, 3(6 × 11), 2(17 × 15)
4 2 72 × 74,89 × 73 5 3(11 × 7), 2(20 × 16)
5 4 59 × 38, 2(44 × 32), 46 × 47 7 6 × 17, 2(18 × 16), 2(8 × 15), 2(18 × 11)
6 3 56 × 41,100 × 45,40 × 92 2 13 × 20,18 × 13
7 2 73 × 77,83 × 54 6 2(5 × 7), 2(16 × 18), 2(10 × 9)

19 8

0 2 78 × 86,72 × 67 10

2

3(15 × 5), 3(6 × 6), 18 × 10, 2(8 × 10), 14 × 19
1 3 53 × 67,37 × 80,67 × 56 8 2(17 × 5), 2(20 × 15), 2(15 × 13), 2(15 × 9)
2 3 57 × 85,52 × 50,75 × 37 6 2(17 × 9), 2(9 × 9), 2(12 × 14)
3 3 64 × 44,45 × 96,75 × 52 10 3(18 × 20), 2(13 × 9), 8 × 9,9 × 7, 3(14 × 14)
4 2 56 × 93,53 × 49 9 3(16 × 10), 3(10 × 14), 12 × 17, 2(6 × 15)
5 2 51 × 89,65 × 72 5 16 × 14,18 × 8, 3(16 × 5)
6 2 92 × 64,81 × 95 6 3(19 × 7), 2(6 × 14), 17 × 16
7 3 62 × 52,32 × 97,95 × 35 8 3(7 × 16), 2(10 × 14), 11 × 12, 2(13 × 8)

20 8

0 3 75 × 82,69 × 79,76 × 64 5

3

2(14 × 10), 2(15 × 13), 14 × 12
1 2 49 × 68,61 × 79 12 3(11 × 18), 2(6 × 12), 2(7 × 7), 3(5 × 12), 2(13 × 18)
2 3 92 × 41,74 × 51,78 × 93 7 10 × 5, 2(13 × 6), 2(8 × 10), 2(5 × 13)
3 3 61 × 85,45 × 51,34 × 50 7 3(8 × 19), 14 × 10, 3(9 × 11)
4 2 41 × 50,63 × 84 6 2(13 × 20), 2(18 × 12), 2(10 × 5)
5 2 81 × 43,53 × 45 6 2(7 × 14), 13 × 7, 2(9 × 11), 19 × 17
6 3 35 × 82, 2(33 × 34) 7 6 × 14, 2(17 × 19), 19 × 10, 2(15 × 9), 11 × 11
7 3 92 × 52,83 × 65,70 × 70 13 3(13 × 18), 2(16 × 6), 3(12 × 8), 3(5 × 18), 2(19 × 11)

0 2 65 × 50,93 × 92 5 2(7 × 8), 3(12 × 10)
1 2 90 × 68,57 × 69 7 2(13 × 6), 3(19 × 14), 6 × 11, 6 × 5
2 3 78 × 71,56 × 70,62 × 100 6 19 × 15, 2(8 × 17), 3(15 × 19)
3 2 50 × 84,30 × 49 7 2(7 × 7), 14 × 17, 3(14 × 13), 8 × 16

(continued on next page)
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Table A.13 (continued).

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

4 2 73 × 99,44 × 72 4 7 × 13, 3(8 × 7)
5 3 48 × 50,70 × 79,100 × 52 10 17 × 16, 2(13 × 17), 2(5 × 10), 2(16 × 12), 3(6 × 15)
6 3 36 × 93,36 × 77,92 × 90 4 2(13 × 15), 2(9 × 18)
7 3 74 × 65,47 × 70,100 × 34 4 3(15 × 18), 11 × 9
8 2 50 × 81,70 × 87 5 16 × 10, 2(16 × 17), 2(10 × 13)
9 2 52 × 86,46 × 48 9 11 × 14, 2(19 × 8), 7 × 14, 2(15 × 6), 3(15 × 19)
10 2 93 × 47,31 × 89 5 13 × 16,15 × 18, 3(18 × 7)
11 2 81 × 92,37 × 80 11 3(9 × 14), 2(16 × 8), 2(5 × 19), 15 × 7, 3(14 × 17)

22 12

0 2 73 × 35,72 × 91 5

2

6 × 5, 7 × 8,16 × 12, 2(11 × 8)
1 2 39 × 63,54 × 63 8 2(13 × 13), 3(7 × 19), 3(11 × 7)
2 3 96 × 44,63 × 56,54 × 53 5 8 × 20,15 × 11,18 × 8, 2(14 × 9)
3 2 45 × 82,69 × 37 12 3(17 × 17), 3(19 × 11), 13 × 11, 3(9 × 11), 2(7 × 14)
4 3 72 × 62,63 × 36,37 × 97 5 18 × 13,19 × 15, 2(18 × 19), 15 × 14
5 2 39 × 37,84 × 42 6 3(17 × 6), 3(10 × 5)
6 3 2(31 × 38), 98 × 38 13 2(8 × 18), 3(8 × 16), 3(6 × 13), 2(16 × 7), 3(8 × 7)
7 3 99 × 67,94 × 93,65 × 87 12 3(14 × 6), 20 × 19, 2(20 × 14), 3(17 × 17), 3(12 × 14)
8 2 78 × 66,42 × 95 6 3(9 × 5), 18 × 13, 2(6 × 5)
9 2 78 × 50,84 × 44 6 3(13 × 13), 12 × 9, 2(15 × 16)
10 3 76 × 51,70 × 88,76 × 57 6 3(15 × 12), 3(7 × 12)
11 3 71 × 40,44 × 52,55 × 58 6 5 × 18, 3(12 × 6), 2(6 × 17)

23 12

0 3 100 × 62,68 × 83,86 × 66 4

2

3(5 × 11), 20 × 15
1 2 82 × 51,65 × 68 8 2(8 × 19), 2(20 × 18), 19 × 11,14 × 7, 2(19 × 5)
2 2 66 × 60,60 × 63 4 12 × 5, 3(17 × 14)
3 3 81 × 52,32 × 97,97 × 46 7 2(20 × 10), 3(11 × 10), 2(13 × 18)
4 2 34 × 57,39 × 95 6 2(13 × 18), 2(13 × 15), 6 × 12,20 × 17
5 2 38 × 92,33 × 95 6 2(19 × 9), 11 × 17, 2(17 × 9), 17 × 17
6 3 77 × 44,37 × 100,50 × 37 9 3(9 × 16), 3(5 × 20), 3(19 × 9)
7 3 86 × 62,92 × 99,72 × 43 5 2(19 × 5), 3(15 × 17)
8 2 58 × 34,57 × 88 7 10 × 17,6 × 15, 2(5 × 12), 3(10 × 10)
9 3 2(51 × 45), 50 × 53 9 3(19 × 6), 9 × 16, 5 × 8, 3(20 × 20), 15 × 10
10 3 98 × 92,84 × 46,35 × 45 6 11 × 20, 2(12 × 15), 3(15 × 6)
11 2 37 × 35,41 × 54 2 14 × 6,14 × 9

24 12

0 3 69 × 73,63 × 95,62 × 94 8

2

19 × 20, 3(13 × 12), 14 × 7, 3(14 × 19)
1 2 69 × 32,39 × 59 8 8 × 9, 2(10 × 8), 3(18 × 14), 2(10 × 19)
2 3 97 × 33,78 × 42,56 × 30 7 17 × 14, 3(15 × 10), 3(20 × 12)
3 3 87 × 55,36 × 76,33 × 56 4 3(10 × 6), 15 × 20
4 3 100 × 84, 2(36 × 41) 10 15 × 18, 3(8 × 8), 2(13 × 16), 20 × 15, 3(15 × 17)
5 3 85 × 67,92 × 35,46 × 98 5 8 × 19,19 × 6, 3(19 × 19)
6 2 52 × 75,56 × 60 10 3(14 × 18), 3(8 × 6), 5 × 15, 3(9 × 17)
7 3 35 × 53,67 × 54,62 × 93 4 11 × 7, 3(9 × 7)
8 2 97 × 66,69 × 39 4 7 × 18,8 × 8, 2(19 × 17)
9 2 83 × 38,54 × 66 7 2(18 × 7), 3(20 × 13), 2(19 × 17)
10 2 87 × 51,33 × 55 4 2(9 × 20), 2(15 × 7)
11 3 68 × 68,39 × 87,82 × 78 6 19 × 14, 2(5 × 18), 3(13 × 8)

25 12

0 3 86 × 45,57 × 40,64 × 87 9

1

15 × 11, 3(14 × 20), 3(9 × 16), 2(15 × 7)
1 2 70 × 31,95 × 99 8 7 × 6, 2(12 × 20), 19 × 8, 3(15 × 8), 7 × 18
2 3 49 × 36,83 × 98,35 × 51 4 2(10 × 16), 2(20 × 12)
3 4 61 × 63,97 × 89, 2(34 × 40) 12 20 × 15, 3(14 × 18), 3(16 × 15), 3(9 × 6), 2(8 × 16)
4 3 33 × 65,68 × 56,90 × 82 10 3(12 × 11), 3(20 × 13), 12 × 20, 3(6 × 13)
5 2 83 × 83,79 × 81 5 3(15 × 19), 11 × 14,11 × 15
6 2 51 × 77,33 × 95 6 2(5 × 5), 2(7 × 12), 2(8 × 14)
7 2 32 × 35,99 × 81 6 2(17 × 17), 3(14 × 7), 7 × 13
8 3 47 × 58,72 × 81,83 × 51 2 14 × 6,5 × 17
9 3 42 × 99,75 × 47,57 × 87 10 2(6 × 20), 2(15 × 6), 3(17 × 14), 19 × 14, 2(19 × 12)
10 2 66 × 59,54 × 86 4 5 × 18, 3(5 × 20)
11 3 55 × 58,99 × 45,67 × 73 6 2(11 × 15), 3(20 × 13), 13 × 19

26 12

0 2 51 × 42,79 × 85 5

5

6 × 13,8 × 15, 2(16 × 7), 15 × 15
1 3 95 × 82,100 × 90,54 × 75 3 2(18 × 5), 7 × 17
2 2 85 × 35,69 × 83 4 7 × 19, 3(17 × 13)
3 2 90 × 100,81 × 96 11 2(13 × 12), 2(12 × 19), 2(20 × 17), 2(16 × 19), 3(14 × 6)
4 3 79 × 91,51 × 40,85 × 79 8 13 × 15,19 × 7, 2(14 × 15), 2(6 × 19), 2(20 × 7)
5 3 78 × 59,85 × 31,85 × 56 10 2(17 × 11), 3(10 × 9), 5 × 19, 3(15 × 11), 18 × 12
6 2 81 × 76,66 × 70 5 2(12 × 6), 2(19 × 16), 11 × 20

(continued on next page)
24



Expert Systems With Applications 223 (2023) 119866E.G. Birgin et al.

A

Table A.13 (continued).

Inst. 𝑃 𝑠 Objects 𝑠𝑗 Items 𝑠𝑖

𝑚𝑠 𝑊𝑠𝑗 × 𝐻𝑠𝑗 𝑛𝑠 𝑑 𝑤𝑠𝑖 × ℎ𝑠𝑖

7 2 80 × 52,74 × 68 3 14 × 6,14 × 17,13 × 14
8 3 83 × 95,45 × 48,95 × 63 5 7 × 10, 3(19 × 8), 18 × 16
9 2 79 × 82,79 × 36 7 2(17 × 19), 2(13 × 11), 3(6 × 10)
10 3 32 × 85,45 × 97,78 × 86 8 2(14 × 18), 3(17 × 19), 2(12 × 15), 7 × 13
11 2 45 × 42,36 × 71 7 9 × 15, 3(14 × 8), 3(19 × 10)

27 12

0 5 47 × 71,71 × 96, 3(32 × 51) 10

1

16 × 9, 3(19 × 13), 3(17 × 12), 3(18 × 17)
1 2 62 × 65,38 × 91 3 2(20 × 18), 11 × 5
2 2 100 × 62,69 × 62 7 18 × 5, 3(13 × 19), 3(17 × 15)
3 2 61 × 47,84 × 91 11 6 × 6, 3(20 × 5), 15 × 12, 3(17 × 18), 3(7 × 15)
4 3 90 × 82,42 × 52,91 × 35 12 3(13 × 13), 5 × 18, 3(8 × 8), 2(9 × 15), 3(10 × 18)
5 2 93 × 96,95 × 54 11 2(8 × 15), 2(16 × 15), 15 × 13, 3(11 × 5), 3(10 × 5)
6 2 67 × 97,72 × 65 5 3(9 × 18), 2(14 × 14)
7 2 43 × 81,58 × 100 5 2(11 × 6), 18 × 17,9 × 7,8 × 13
8 3 37 × 58,48 × 40,54 × 93 4 16 × 20, 3(10 × 13)
9 3 63 × 69,71 × 52,50 × 36 4 2(15 × 17), 2(19 × 19)
10 2 89 × 50,94 × 56 8 3(5 × 5), 14 × 11,13 × 11, 3(5 × 20)
11 2 91 × 67,57 × 72 7 15 × 17,18 × 16, 2(7 × 18), 3(13 × 19)

28 12

0 2 93 × 73,38 × 66 9

3

3(15 × 13), 13 × 11, 3(15 × 5), 2(8 × 15)
1 3 94 × 36,53 × 41,100 × 64 5 2(20 × 16), 3(6 × 12)
2 2 69 × 98,92 × 99 8 2(17 × 19), 3(8 × 10), 3(8 × 17)
3 3 75 × 42,36 × 41,66 × 47 3 2(19 × 12), 14 × 17
4 3 2(35 × 40), 59 × 64 9 19 × 11,17 × 11,6 × 20, 3(18 × 17), 3(11 × 6)
5 2 71 × 51,53 × 31 6 3(19 × 14), 3(15 × 15)
6 2 73 × 55,71 × 61 6 2(14 × 18), 2(5 × 19), 2(15 × 16)
7 2 93 × 34,35 × 74 5 2(12 × 17), 9 × 15, 2(19 × 9)
8 3 99 × 49, 2(37 × 69) 14 3(14 × 5), 2(7 × 5), 3(15 × 15), 3(19 × 18), 3(9 × 19)
9 2 65 × 81,31 × 61 12 3(11 × 13), 3(7 × 8), 3(6 × 15), 3(6 × 9)
10 2 79 × 48,75 × 73 4 20 × 19, 3(12 × 7)
11 2 89 × 72,58 × 91 12 2(15 × 14), 2(10 × 17), 2(7 × 18), 3(11 × 20), 3(15 × 18)

29 12

0 3 70 × 66,90 × 86,36 × 44 7

1

12 × 20, 2(8 × 20), 15 × 16, 2(9 × 6), 12 × 9
1 3 75 × 85,47 × 59,32 × 38 6 14 × 19,8 × 11,7 × 10, 3(6 × 5)
2 3 99 × 44,45 × 83,65 × 95 5 10 × 6,15 × 20, 3(16 × 10)
3 3 86 × 72,48 × 81,72 × 42 4 9 × 12,10 × 12,11 × 14,7 × 14
4 2 99 × 35,48 × 43 6 5 × 5, 2(10 × 11), 3(6 × 10)
5 3 39 × 43,72 × 55,52 × 60 6 2(18 × 12), 2(11 × 6), 5 × 15,9 × 13
6 2 30 × 34,81 × 84 4 17 × 10, 3(6 × 7)
7 3 81 × 48,46 × 32,38 × 36 9 9 × 15,11 × 9, 3(5 × 18), 2(13 × 12), 2(13 × 6)
8 3 89 × 65,99 × 66,46 × 66 6 5 × 9, 2(8 × 16), 11 × 5,6 × 16,10 × 11
9 3 40 × 92,46 × 49,70 × 67 8 19 × 15,20 × 15, 3(8 × 17), 3(12 × 10)
10 3 76 × 42,66 × 90,85 × 60 10 2(9 × 9), 3(11 × 14), 3(20 × 9), 2(14 × 14)
11 5 91 × 86, 2(46 × 39), 2(41 × 41) 11 3(16 × 20), 2(19 × 16), 3(6 × 7), 3(20 × 15)

30 12

0 3 34 × 50,34 × 38,98 × 33 3

2

2(6 × 7), 16 × 8
1 3 49 × 78,53 × 70,84 × 100 2 8 × 19,9 × 14
2 3 79 × 96,69 × 43,76 × 73 8 20 × 5, 3(5 × 7), 17 × 10, 2(12 × 12), 5 × 13
3 2 50 × 98,60 × 59 9 2(5 × 8), 3(20 × 13), 2(18 × 16), 2(13 × 15)
4 3 36 × 100,90 × 41,73 × 97 5 8 × 15,16 × 19, 2(17 × 11), 7 × 7
5 3 82 × 96,51 × 40,55 × 47 6 3(9 × 8), 20 × 18, 2(10 × 9)
6 3 50 × 78,77 × 35,66 × 79 4 3(9 × 7), 11 × 10
7 2 44 × 45,76 × 54 11 8 × 17, 3(11 × 7), 3(8 × 20), 12 × 14, 3(14 × 11)
8 3 62 × 71,93 × 67,90 × 93 4 15 × 13, 3(15 × 15)
9 3 89 × 62,75 × 86,63 × 40 3 17 × 9, 2(8 × 18)
10 3 38 × 59,59 × 71,100 × 51 4 15 × 13, 3(10 × 5)
11 5 35 × 99, 2(46 × 94), 2(61 × 51) 10 3(19 × 16), 4(15 × 20), 3(18 × 17)
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